Improving surface PM$_{2.5}$ forecast using an ensemble of satellite data, chemistry transport model outputs, and surface observations

Huanxin (Jessie) Zhang1,2, Jun Wang1,2, Lorena Castro García1,2
Todd Plessel3, James Szykman4

1Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City, IA, USA
2Center for Global and Regional Environmental Research, The University of Iowa, Iowa City, IA, USA
3General Dynamics Information Technology, RTP, NC, USA
4U.S. Environmental Protection Agency, Hampton, VA, USA

4 Jan 2019
Phoenix, AZ
An era of multiple operational forecasts & satellite data of aerosols

- NAVAL NAAPS
- NAAPS + FLAMBE; ECMWF NOAA NAQFC-smoke
- NAAPS + DT Land AOD DA; NAQFC-dust
- NAAPS + Ocean AOD DA
- NASA GEOS-FP & Radiance DA
- NAQFC PM$_{2.5}$
- MODIS/Terra; MISR/Terra; MOPITT/Terra
- MODIS/Aqua, AIRS/Aqua
- CALIPSO
- OMI/Aura
- VIIRS, OMPS/NPP, GOCI
- Himawari-8
- GOES-16
- JPSS-1
- TEMPO, MAIA
- NAAPS + Ocean AOD DA
- NAAPS + DT Land AOD DA; NAQFC-dust
- NAAPS + FLAMBE; ECMWF NOAA NAQFC-smoke
- NAVAL NAAPS

Timeline:
- 2000: MODIS/Terra; MISR/Terra; MOPITT/Terra
- 2002: MODIS/Aqua, AIRS/Aqua
- 2004: CALIPSO
- 2006: OMI/Aura
- 2012: VIIRS, OMPS/NPP, GOCI
- 2015: Himawari-8
- 2016: GOES-16
- 2017: JPSS-1
- 2020: TEMPO, MAIA
- ~2018: NASA GEOS-FP & Radiance DA
- 2009: NAAPS + Ocean AOD DA
- 2012: NAAPS + DT Land AOD DA; NAQFC-dust
- 2016: NAQFC PM$_{2.5}$
Global forecast scheduling cycle

- Delay time period
- 24-hr forecasts that are ahead of clock time

Observation

different models ensembles

Analysis

$t - 24$
$t - 12$
$t - 3$
t
$t + 3$
$t + 6$
$t + 12$
$t + 24$
Enabling single best and rapid AQ forecast and advisory through model output statistics (MOS) techniques

24-hr forecasts that are ahead of clock time
Different models have different strengths and weakness

Case study: June, 2012

Monthly EPA: $8.80 \pm 3.65 \mu g \text{ m}^{-3}$

Monthly GC: $6.61 \pm 3.28 \mu g \text{ m}^{-3}$ (-25%)

Monthly WC: $4.37 \pm 2.57 \mu g \text{ m}^{-3}$ (-50%)

Monthly CMAQ: $6.94 \pm 3.30 \mu g \text{ m}^{-3}$ (-21%)
Step 1. forecast bias correction at surface observation sites with Kalman-Filter (KF) ensemble approach

<table>
<thead>
<tr>
<th></th>
<th>GC</th>
<th>WC</th>
<th>CMAQ</th>
<th>En-raw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMB</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>R</td>
<td>0.51</td>
<td>0.36</td>
<td>0.56</td>
<td>0.62</td>
</tr>
<tr>
<td>y</td>
<td>0.43x + 3.0</td>
<td>0.25x + 2.3</td>
<td>0.52x + 2.6</td>
<td>0.4x + 2.6</td>
</tr>
<tr>
<td>RMSE</td>
<td>6.1</td>
<td>7.6</td>
<td>5.9</td>
<td>5.6</td>
</tr>
<tr>
<td>y</td>
<td>6.9 ± 5.1</td>
<td>4.5 ± 4.2</td>
<td>7.4 ± 5.2</td>
<td>6.3 ± 3.9</td>
</tr>
<tr>
<td>N</td>
<td>14056</td>
<td>14056</td>
<td>14056</td>
<td>14056</td>
</tr>
</tbody>
</table>

Normalized Standard Deviation

Correlation

NMB (%)

Model

KF-Model

Ensemble

Ground PM$_{2.5}$

Expected
Step II. **Forecast** bias and pattern correction at locations that have no ground-based sites

- Iteration 1, $R = 125$ km
- Iteration 2, $R = 63$ km
- Iteration 3, $R = 15$ km
- ...
KF-SCM sites

Evaluation sites
Remote Sensing Information Gateway

A webservice & application for quick easy access to subsets of Petabytes of air quality data.

https://www.epa.gov/hesc/remote-sensing-information-gateway
Thank you!