Synthesizing satellite- and surface-based air quality observations during the 2018 Kilauea eruption

Levi M. Golston, Da Pan, Xuehui Guo, Lei Tao, Rui Wang, James McSpiritt, Nathan Li, Mark A. Zondlo
Princeton University, Princeton, New Jersey

Introduction

Background
- Kilauea Volcano (Big Island, Hawaii)
 - Major SO₂ source in past decades [1]
 - May 3, 2018: new eruption begins
 - Some signs of eruption end in July, but was not recognized at the time (USGS)
 - Vog typical for Big Island western coast, with increased impact during 2018 eruption
 - Data available but needs to be synthesized

Research Questions
- What was the spatial and temporal pattern of volcanic-impacted air quality on the Big Island?
 - Sulfur dioxide
 - Particulate matter
 - Could public satellite and sensor network data have helped track the eruption activity?

Stakeholder Input
- Value to public to conveniently combine and present available data
- Some concerns with satellite data
 - Cloud cover handling; SO₂ height assumption; row anomaly (for OMI)
 - Consistency with the USGS, ground-based emission estimates

Volcanic Air Quality

Datasets Investigated
- Hawaii Department of Health
 - 14 stations
 - Variable coverage PM₂.₅, SO₂
 - 5-, 15-, or 60-min averages
- PurpleAir network (commercial)
 - 68 stations, PM₂.₅ and met
- Satellite (OMI and OMPS)
 - SO₂ column using consistent retrieval algorithm [6]
- Mobile monitoring (Princeton)
 - Multi-species campaign Aug. 5 to 20

Satellite Examples

SO₂ plume as observed from space, driven by trade wind conditions

Spatial and Temporal Trends

DEPARTMENT OF HEALTH NETWORK

Air quality at three stations through early Dec. 2018; volcanic signal seen May to early August

OMI AND OMPS

SO₂ mass evolution from both satellites (circles: individual days; lines: 7-day mean); product from https://so2.gsfc.nasa.gov/index.html

Conclusions and Implications

Main results
- Clear start, evolution, and end to eruption seen in all four observational datasets; satellite measures spatially integrated emissions while surface monitors directly applicable to air quality
- Satellite SO₂ retrievals tracked slowdown in July (especially OMPS) unlike the surface networks; in retrospect, had value as sign of slowing volcano activity
- Air quality significantly impacted during May–July; afterwards, conditions cleaner than normal
- 7-day mean OMPS SO₂ consistently higher than from OMI

Future work
- Model SO₂ dispersion patterns with STILT and estimate daily SO₂ emissions

Satellite Examples

Comparison

Comparison to DustTrak instrument (where driven within 10 km of monitoring station)

SATELLITE COMPARISON

• Most OMPS readings above 1:1 line; through trends consistent for both
• Results used lower tropospheric (3 km center altitude) profile
• OMI: PBL assumption 4.3x higher
• OMPS: PBL assumption 3.2x higher
• Number of quality controlled results (April through August)
 - 131 results for OMI, 104 for OMPS
 - 90 for both

Bibliography

Acknowledgments: OMI and OMPS science teams, Hawaii Department of Health, and PurpleAir for data access