HAQAST Research at UNC

Year 2.5 Progress Update, PI West 📗

Global Mapping of Ozone Surface Concentration for Global Burden of Disease

- A first global map has been delivered to the GBD team and used in GBD 2017.
- 1 paper submitted (Chang, GMD).

Global Air Quality and Health Co-benefits of the Paris Agreement Pledges

 Analyzing emissions from GCAM to start simulations this spring. Tiger Team: Efficacy of Environmental Regulations in the Eastern US

Trends in US air pollution-related deaths since 1990

• 1 paper published (Zhang, ACP), 1 in preparation.

Tiger Team: California fires

Analyzing health impacts of fires

Tiger Team: Global indicators

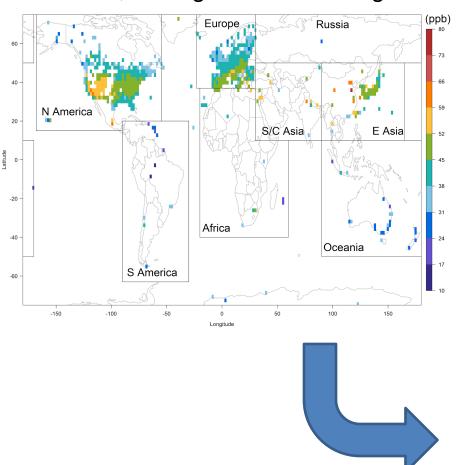
Global indicators of surface ozone.

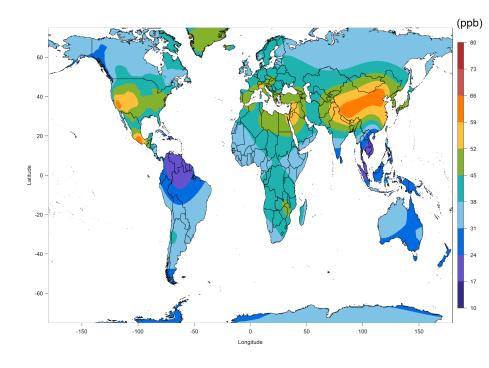
Goal: Estimate global surface ozone concentrations by statistically fusing global ozone observations and an ensemble of global models.

Ozone metric: 2008-2014 average of 6-month average 8-hr. daily maximum surface ozone concentration

Stakeholder partners: Global Burden of Disease Assessment – Michael Brauer (UBC), Rick Burnett (Health Canada), Bryan Hubbell (EPA).

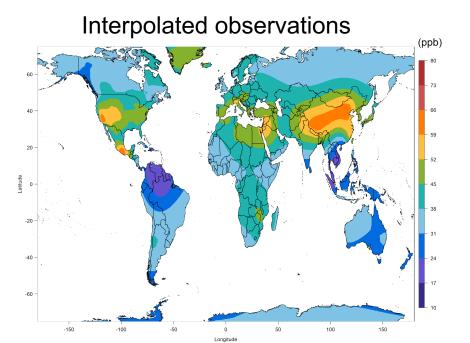
Team: Jason West, Marc Serre, Marissa Delang, Jacob Becker, Elyssa Collins (UNC), Owen Cooper, Kai-Lan Chang (NOAA)

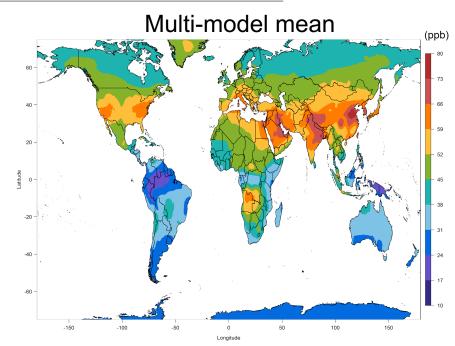


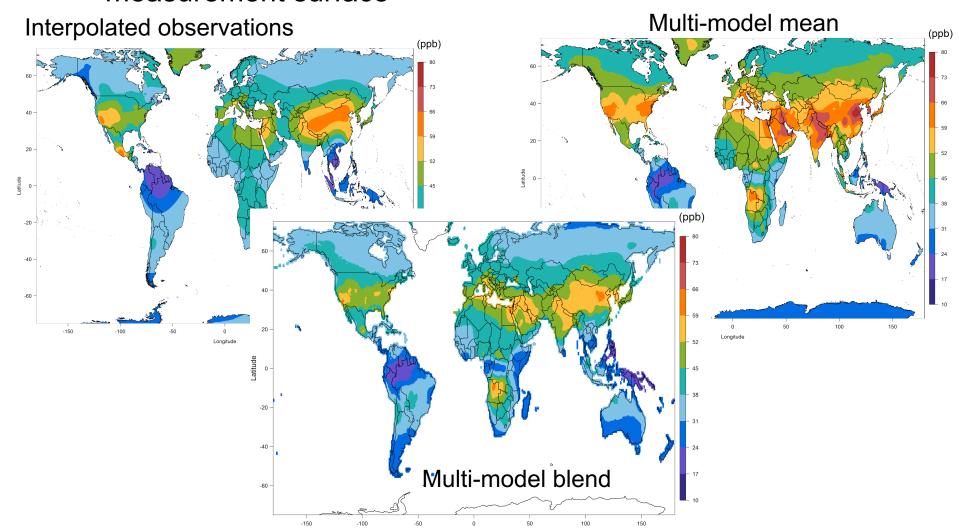

A new method (M³Fusion-v1) for combining observations and multiple model output for an improved estimate of the global surface ozone distribution

Kai-Lan Chang^{1, 2}, Owen R. Cooper^{2, 3}, J. Jason West⁴, Marc L. Serre⁴, Martin G. Schultz⁵, Meiyun Lin^{6, 7}, Virginie Marécal⁸, Béatrice Josse⁸, Makoto Deushi⁹, Kengo Sudo^{10, 11}, Junhua Liu^{12, 13}, and Christoph A. Keller^{12, 13, 14}

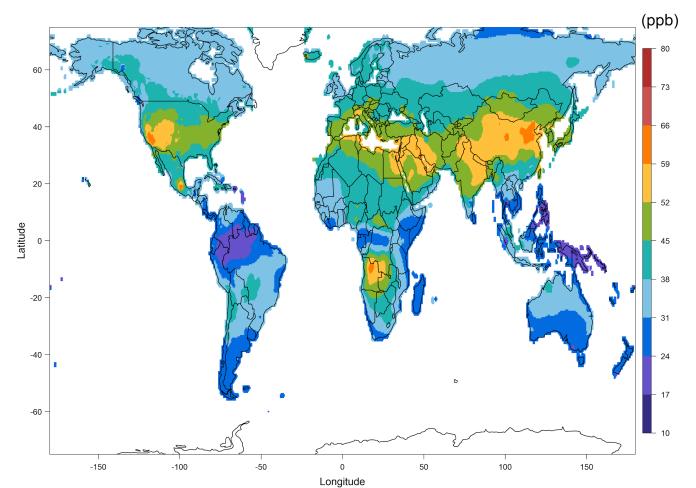
Step 1 – Spatial interpolation of TOAR measurements


4801 sites, averaged within 2°x2° grid cells




Step 2 – Evaluate each model with respect to observations

Model ID	Group	Resolution	Meteorological Forcing [†]	References
CHASER	Nagoya University; Japan Agency for Marine-Earth	$2.8^{\circ} \times 2.8^{\circ}$	C2	Sudo et al. (2002a, b); Watan-
(MIROC-ESM)	Science and Technology (JAMSTEC), Japan			abe et al. (2011)
GEOSCCM	NASA Goddard Space Flight Center, USA	$2.5^{\circ} \times 2^{\circ}$	C2	Oman et al. (2011)
GFDL-AM3	NOAA Geophysical Fluid Dynamics Laboratory,	$2^{\circ} \times 2^{\circ}$	C1SD	Lin et al. (2012, 2014, 2017)
	USA			
G5NR-Chem	NASA Goddard Space Flight Center, USA	$0.125^{\circ} \times 0.125^{\circ}$	*	Hu et al. (2018)
MOCAGE	Centre National de Recherches Météorologiques;	$2^{\circ} \times 2^{\circ}$	C2	Josse et al. (2004); Teyssèdre
	Météo France, France			et al. (2007)
MRI-ESM1r1	Meteorological Research Institute, Japan	$2.8^{\circ} \times 2.8^{\circ}$	C2	Adachi et al. (2013)



Step 3 – Find the linear combination of models in each world region that minimizes error with respect to the interpolated measurement surface

Step 4 – Bias correct within 2° of observation sites (using interpolated surface)

Global burden of disease of air pollution (2017)

Global Deaths per Year

Ambient PM_{2.5} pollution:

2.9 (2.5 – 3.4) million

1 in 19 deaths globally!

Ambient ozone pollution:

0.47 (0.18 – 0.77) million

1.6 (1.4 – 1.9) million

1 in 45 deaths globally!

Household air pollution from solid fuels:

1 High systolic blood pressure

2 Smoking

3 High fasting plasma glucose

4 High body-mass index

5 Short gestation for birthweight

6 Low birthweight for gestation

7 Alcohol use

8 High LDL cholesterol

9 Child wasting

10 Ambient particulate matter

11 Low whole grains

12 High sodium

13 Low fruit

14 Unsafe water source

15 Impaired kidney function

16 Household air pollution

Ambient PM_{2.5} pollution is the 8th leading risk factor for death globally.

Burnett et al. (PNAS, 2018) estimate 8.9 (7.5-10.3) million deaths from PM_{2.5} in 2015.

GBD 2017 Team, Lancet, 2018

Global Ozone Mapping: Moving Forward

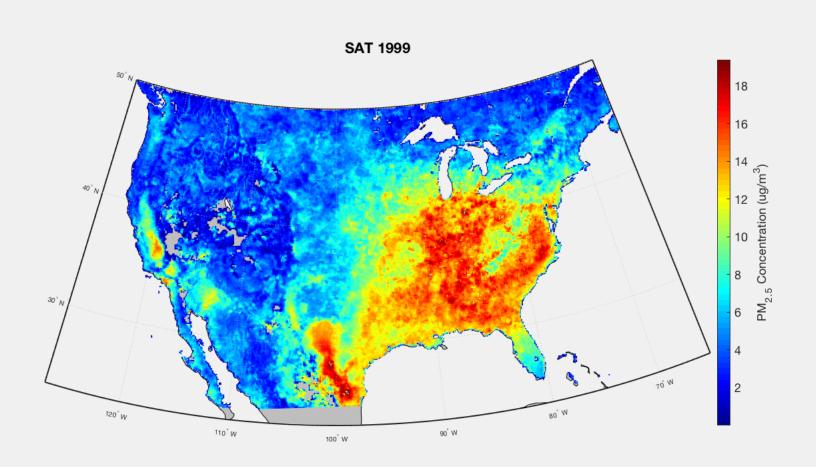
- Step 1 Spatial interpolation of TOAR measurements
- Step 2 Evaluate each model with respect to observations
- Step 3 Find the linear combination of models in each world region that minimizes error with respect to the interpolated measurement surface
- Step 4 Bias correct within 2° of observation sites (using interpolated surface)

Global Ozone Mapping: Moving Forward

- Step 1 Spatial interpolation of TOAR measurements
- Step 2 Evaluate each model with respect to observations
- Step 3 Find the linear combination of models in each world region that minimizes error with respect to the interpolated measurement surface
- Step 4 Bias correct within 2° of observation sites (using interpolated surface)

Next steps

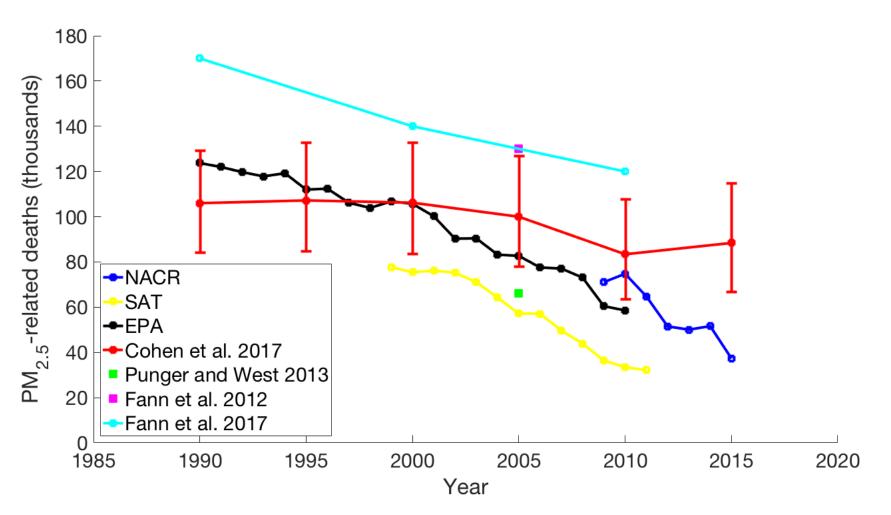
- 1 Perform a new data fusion with observations using Bayesian Maximum Entropy method.
- 2 Add fine spatial structure using NASA G5NR (0.125°).
- 3 Add new observations from China and elsewhere, updated models.
- 4 Estimate ozone for 1990, 1995, 2000, 2005, 2010, 2015 and 2018.


Health Benefits of Decreases in PM_{2.5} and Ozone in the United States, 1990-2015

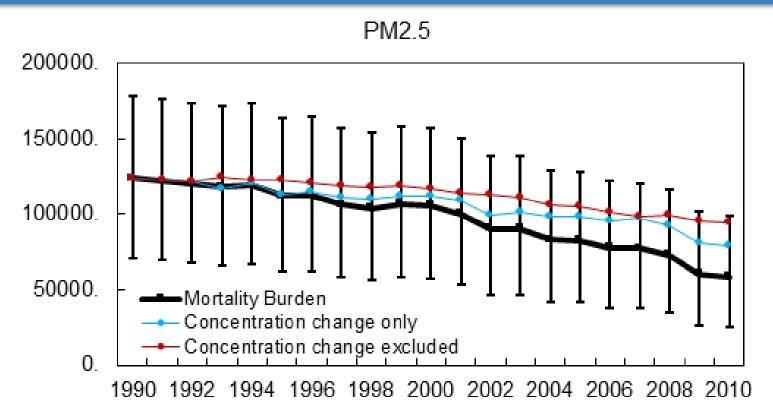
Omar Nawaz, Yuqiang Zhang, Daniel Q. Tong, Aaron van Donkelaar, Randall Martin, J. Jason West

- * Air pollutant datasets:
 - A 21-year CMAQ simulation (1990-2011) EPA
 - The North American Chemical Reanalysis (2009-2015) NACR
 - N. America $PM_{2.5}$ satellite-derived data combined with a model and surface observations (1999-2012) **SAT**
- * We use annual county-level population and baseline causespecific mortality rates from the CDC to assess air pollution mortality in each year.

Trends in PM_{2.5} (SAT)

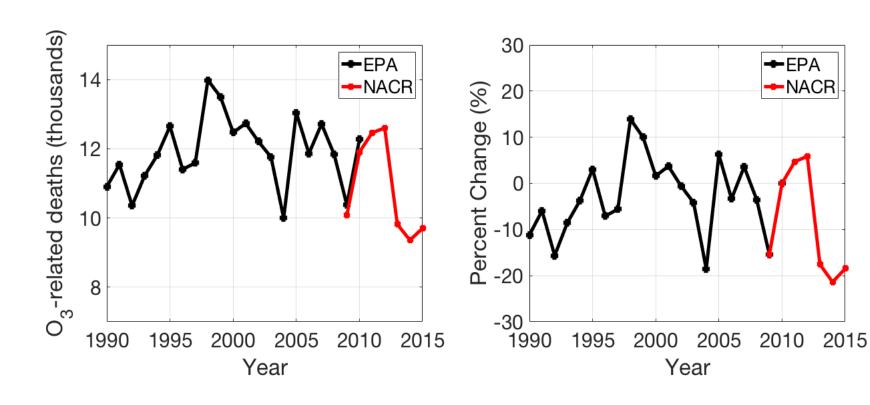

US PM_{2.5}-related deaths

Zhang, ACP 2018; Nawaz, in prep.

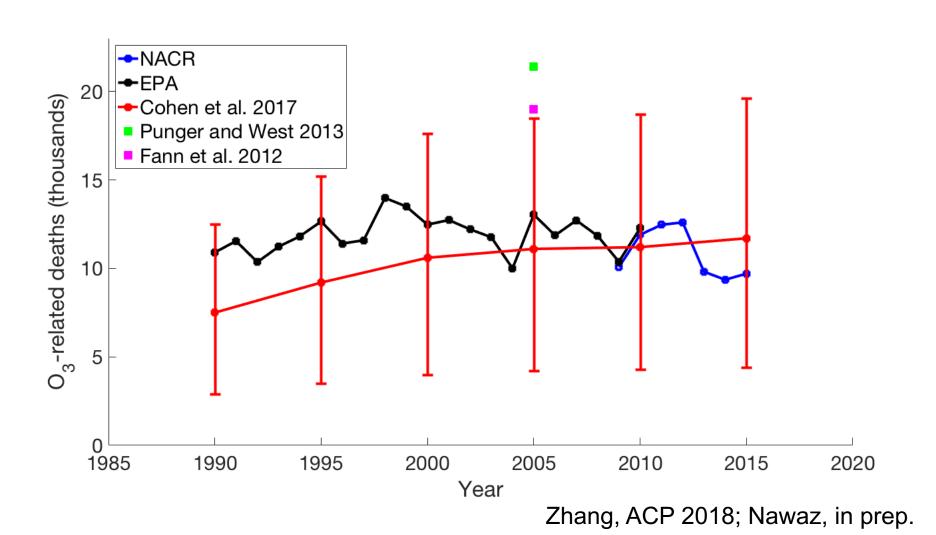


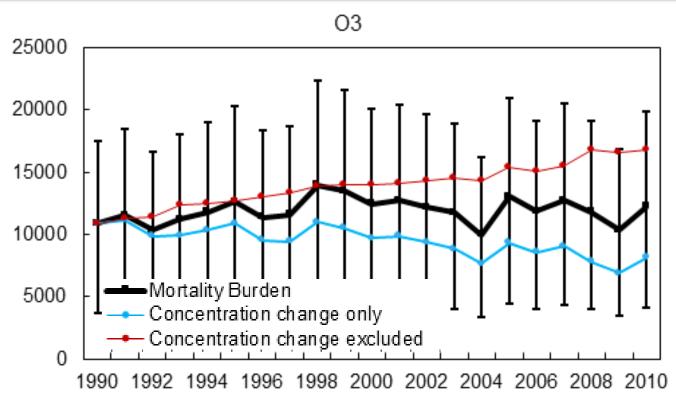
Comparison with Other Studies (PM_{2.5})

Zhang, ACP 2018; Nawaz, in prep.


PM_{2.5} Mortality Burden (EPA)

- PM_{2.5} mortality decreased by 53% from 123,700 (70,800-178,100) deaths in 1990 to 58,600 (24,900-98,500) in 2010.
- Without the decrease in $PM_{2.5}$ since 1990, the burden would have only decreased by 24%.
- PM_{2.5} reductions since 1990 have decreased deaths in 2010 by about
 35,800.
 Zhang, ACP 2018


US O₃-related deaths


Zhang, ACP 2018; Nawaz, in prep.

Comparison with Other Studies (O₃)

O₃ Mortality Burden (EPA)

- Ozone mortality increased by 13% from 10,900 (3,700-17,500) deaths in 1990 to 12,300 (4,100-19,800) in 2010.
- Without the decrease in ozone since 1990, the burden would have increased by 55%.
- Ozone reductions since 1990 have decreased deaths in 2010 by about 4,600.

 Zhang, ACP 2018

In the US, air pollution kills:

109,000 (2017 from GBD), 1 in 25 US deaths

47,000 (2015 our work), 1 in 58 US deaths

Diabetes: **80,000**

Influenza & pneumonia: 52,000

All suicides: 45,000

All transportation accidents: 43,000

Breast cancer: 42,000

All gun shootings: 39,000

Prostate cancer: 30,000

Parkinson's: 30,000

Leukemia: **23,000**

HIV AIDS: 6,000 2016 data from CDC