Using Earth Observations to Support Regional and National Environmental Health Surveillance

Yang Liu, Ph.D.
The 3rd HAQAST Meeting
November 28-29, 2017
Columbia University

The Team and Stake Holders

Team

- Yang Liu, Emory University (PI)
- Howard Chang, Emory University
- Matthew Strickland, University of Nevada, Reno
- Heather Holmes, University of Nevada, Reno

Stakeholders

- CDC's Environmental Public Health Tracking Network
- Colorado Department of Public Health and Environment (CDPHE)

Study Objectives

- Conduct a multi-year time-series
 epidemiological study to evaluate the health
 impact of air pollution levels elevated by
 wildfires in Colorado.
- Conduct a national scale epidemiological study to link age-specific county-level daily counts of ED visits with satellite-driven air pollution exposure estimates to demonstrate an application of Tracking's surveillance data.

Daily PM_{2.5} Modeling During Fire Season in Colorado

Goal: Develop a satellite-based high-resolution PM_{2.5} exposure model in Colorado to support epidemiologic research

Downscaler Model $Y \downarrow st = \alpha \downarrow st + \beta \downarrow st X \downarrow st + \gamma Z \downarrow st + \varepsilon \downarrow st$

Ensemble Weighting function $PM \downarrow 2.5, st = (1 - w \downarrow s) Y \downarrow st \uparrow AOD + w \downarrow s Y \downarrow st \uparrow CMAQ$

Ten-fold Cross Validation Results

- The CV R² of the ensemble model was 0.66, better than the AOD downscaler or CMAQ downscaler alone
- The performance of the Bayesian ensemble model is better than the previously used multi-stage model when using same parameters (R² = 0.44)

Predicted Fire Season PM_{2.5} Maps

The year of 2012 had enhanced PM_{2.5} compared to other years because Colorado experienced an unusually strong fire season in 2012

0 40 80 160 240 320

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 9.0 10.0 11.0 12.0

Predicted Monthly Mean PM_{2.5} Over Fire Events

Our model is able to capture the local scale variability in PM_{2.5} concentrations due to wildfires

Current Status

- PM exposure estimates have been aggregated to 4 km health data grid
- ED visits data from Colorado has been preprocessed and is ready for model incorporation
- Data management and epidemiologic model investigations are currently underway