HAQAST Tiger Team: High Resolution Particulate Matter Data for Improved Satellite-Based Assessments of Community Health

Pat Kinney, Frank Freedman, Susan O'Neill

Boston University
San Jose State University
USDA

hagast.org

HAQAST Participants

- Pat Kinney (Boston University) and Frank
 Freedman (San Jose State Univ) Co-Leads
- Mohammad Al-Hamden (NASA)
- Susan Anenberg (George Washington Univ.)
- Arlene Fiore (Columbia Univ.)
- Daven Henze (Univ. of Colorado Boulder)
- Jeremy Hess (Univ. of Washington)
- Yang Liu (Emory Univ.)
- Susan O'Neill (US Forest Service)
- Daniel Tong (George Mason Univ.)
- Akula Venkatram (UC Riverside)
- Mark Zondlo (Princeton Univ.)

Lamont-Doherty Earth Observatory COLUMBIA UNIVERSITY | EARTH INSTITUTE

PUBLIC HEALTH

External Partners

- Massachusetts Department of Environmental Protection
 - Thomas McGrath, Chief, MassDEP Air Assessment Branch
- Boston Department of the Environment
 - Carl Spector, Director
- Harvard School of Public Health
 - Petros Koutrakis, Professor
- New York City Department of Health and Mental Hygiene
 - Iyad Kheirbek, Director, Air Quality Program
- Queens College
 - Holger Eisl, Barry Commoner Center for Health and the Environment Powerful Ideas for a healthier world
- South Coast Air Quality Management District
 - Sang-Mi Lee (Planning, Rule Development & Area Sources)
- California Department of Public Health
 - Paul English (California Environmental Health Tracking Program
 - Jeff Wagner (Environmental Health Laboratory Branch)
- California Air Resources Board
 - Cynthia Garcia (Research Division)
- Wildland Fire Air Quality Response Program
 - USFS and NPS Leadership

SCHOOL OF PUBLIC HEALTH

Objectives

- 1. Pilot test and validate a novel low-cost sensor for long-term monitoring of $PM_{2.5}$, including elemental composition.
 - Boston, NYC, San Francisco Bay Area, Seattle
- 2. Generate hi-resolution PM_{2.5} concentration maps using 1 km MAIAC MODIS/AOD retrievals, surface measurements, land use data, (and air dispersion modeling)*.
 - Boston, NYC, Los Angeles Basin, Imperial Valley CA
- 3. Optimize "BlueSky" hi-res smoke dispersion modeling for wildfire PM impacts using 1 km AOD and surface measurements.
 - Potential wildfire case studies: Rim (2013), King (2014), Klamath and Rough (2015), Sand 2016
- 4. Compute hi-resolution health impacts of PM_{2.5} based on outputs from above objectives.

Objective 1. Pilot test and validate a low-cost sensor for long-term monitoring of PM_{2.5}

- Most low cost PM sensors are designed for real-time continuous monitoring, and face challenges in measuring reliable, long-term average PM_{2.5} concentrations
- The UNC passive sampler is a simple device that collects particles by gravitational settling and diffusion
- Filters are analyzed for particle size and composition using electron microscopy
- Has been validated for coarse PM, but hasn't been tested extensively for fine PM (PM_{2.5})

Sampling Strategy

- 1. Co-locate UNC passive samplers at existing PM_{2.5} monitoring sites in Boston, NYC, San Francisco Bay Area, Seattle, ...
- 2. Collect sequential monthly and 3-month integrated samples for up to one year.
 - 1. Two vertical orientations: gravitation vs. diffusion dominated sampling
- 3. Samples analyzed by electron microscopy:
 - 1. Count, size and elementally characterize each particle
 - 2. Estimate PM_{2.5} mass concentration, overall and by components
- 4. Retrieve PM and elemental composition data from colocated federal reference and speciation monitors
- 5. Compare monthly, quarterly and longer-term averages from low-cost sampler vs. reference samplers
 - 1. Aiming for < ±30% accuracy

Rt 93 Mass DEP Site Setup

Objective 2. Generate hi-resolution PM_{2.5} concentration maps using 1 km MAIAC MODIS/AOD retrievals, surface measurements, land use data, and air dispersion modeling

Datasets:

- EPA PM_{2.5} Measurements
- MAIAC AOD Product
- MODIS Fire Count Data
- Meteorological Fields (NLDAS)
- Elevation Data
- Major Roads
- Forest Cover
- PM_{2.5} Point Emissions

Slide courtesy of Yang Liu

PM_{2.5} 2010 Average for NYC at 0.01 degree (~1km x 1km resolution).

Source: van Donkelaar, A., R.V Martin, M.Brauer, N. C. Hsu, R. A. Kahn, R. C Levy, A. Lyapustin, A. M. Sayer, and D. M Winker, Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors, Environ. Sci. Technol, doi: 10.1021/acs.est.

5b05833, 2016. [Link]

Support for MATES V (HAQAST ↔ SCAQMD)

Background

- MATES IV Air Toxics Risk Assessment Study (Released May 2015)
- SCAQMD preparing MATES V
- Community scale risk assessment planned
- Interest in higher Resolution PM surfaces & satellite support

Tiger Team Activity

- Generate MAIAC 1-km PM2.5 surfaces over Southern California
- <u>Key HAQAST Participants</u>: Yang Liu, Mohammad Al-Hamdan
- Method: Hu et al. 2014: Remote Sens. Environ.
 2014, 140, 220–232.

http://www.aqmd.gov/home/library/air-quality-data-studies/

Support for Imperial Valley / U.S. Mexican Border PM Activities (HAQAST ↔ CalDPH & CARB)

re https://ivan-imperial.org/air/map

Map of Monitors

Select a monitor location on the map for more information about current air quality at that location. Learn what the Community Air-Quality Level (CAL) colors mean. Gray monitors are offline.

Sunday November 26, 2017 at 03:59 PM

https://ivan-imperial.org/air

Background

- IVAN: 40 low-cost PM2.5 and PM10 air monitors
- Throughout Imperial County.
- Motivated by community health concerns.
- Developed through community group & multiagency partnership (Comite Civico del Valle, California Env Health Tracking Program, University of Washington School of Public Health ...)

Tiger Team Activity

- MAIAC satellite & Dispersion Modeling support
- Understand measurements -> better discern local sources
- <u>Key HAQAST Participants</u>: Y. Liu, F. Freedman, A. Venkatram
- Methods (satellite): Hu et al. (2014)
- Methods (dispersion modeling): Venkatram and Horst (2006) & Pournazeri et al. (2014)

Sand Wildfire, Soberanes Wildfire July 28, 2016

- BlueSky
 Forecast 1-hr
 PM_{2.5}
 Concentrations
- EPA
 AIRNOWTech
 24-hr PM_{2.5}
 Concentrations
- NOAA Hazard Mapping System Smoke Plume Analysis

MAIAC Aqua July 28, 2016

Current Status and Next Steps

Low-cost sensors:

- Partnerships established with relevant air monitoring agencies
- 3 sites in Boston set up in August.
- 2 sites in NYC set up in October.
- 3 sites in Bay area to be set up this month.
- Seattle setups to be discussed.
- Initial analytical data should be forthcoming
- 2. Initial Phone meetings have been held between HAQAST participants and California and NYC stakeholders regarding satellite PM work
 - Spatial and temporal domains for satellite-based PM discussed
- 3. Research Assistant Maria Castillo being hired at BU to coordinate low cost sensor sampling, data analysis, and communications
- 4. Doctoral student Xiaomeng Jin -at Columbia helping with webinar scheduling and note taking
- 5. Doctoral student Raquel Jimenez Celsi at Boston University is obtaining and processing land use and remote sensing data for Boston and NYC
- 6. Health impact methods being developed Susan Anenberg
 - Will test methods over winter using preliminary concentration data
 - Final estimates in spring 2018 pending completion of PM surfaces