IN COLLABORATION WITH THE EPA-FUNDED AIR, CLIMATE & ENERGY (ACE) SEARCH CENTER USING SATELLITE INFORMATION TO AID IN THE DEVELOPMENT OF HIGH SPATIAL RESOLUTION ESTIMATES OF NO₂ & PM_{2.5} #### Presentation by: Dan Goldberg¹ Co-Authors: Lok Lamsal², Christopher Loughner³, Pablo Saide⁴, Greg Carmichael⁵, Yang Zhang⁶, Kai Wang⁶, Chinmay Jena⁶, Zifeng Lu¹ & David Streets¹ ¹University of Chicago & Argonne National Laboratory, Argonne, IL ²NASA Goddard Space Flight Center, Greenbelt, MD ³NOAA Air Resources Laboratory, College Park, MD ⁴University of California-Los Angeles, Los Angeles, CA ⁵University of Iowa, Iowa City, IA ⁶North Carolina State University, Raleigh, NC # ROLE OF THE AIR MASS FACTOR (AMF) IN THE CALCULATION OF OMI NO₂ TROPOSPHERIC VERTICAL COLUMNS $$VerticalColumnNO_2 = \frac{SlantColumnNO_2}{AMF}$$ GMI & CMAQ vs. Aircraft Observations during DISCOVER-AQ MD CMAQ is clearly better at capturing the vertical distribution of NO₂ within an urban region $w_{satellite}$ = scattering weight S_{Model} = **model** shape factor Comparing GMI AMFs vs. CMAQ AMFs in Maryland Using CMAQ AMFs \rightarrow smaller AMF \rightarrow larger NO₂ in urban regions (also shown by Ron Cohen group) #### ENHANCED OMI NO₂ PRODUCTS Goldberg et al., 2017; ACP - (a)→(b): Use CMAQ instead of GMI to calculate the Air Mass Factor (AMF) - (b)→(c): Scale CMAQ based on D-AQ aircraft observations, and then calculate AMF - (c)→(d): Spatial weighting based on the variability within CMAQ [Kim et al., 2016; GMD] Showing a June & July 2008 – 2012 average; r² denotes correlation with ground monitors (d) Is much better than (a) when compared to in situ observations! #### Key takeaways: - Model resolution plays a significant role in the calculation of air mass factors (high resolution = better) - Accuracy of model simulation is critical in generating robust satellite observations - If model emissions or chemistry are way off, satellite will be unrealistic - Spatial weighting helps satellite match urban-scale variability better #### **HOW DOES THIS COMPARE WITH CMAQ?** - Possible reasons for urban overestimate: - Mobile and area source emissions may be too large or perhaps an incorrect spatial allocation of these emissions. - Possible reasons for rural underestimate: - Lack of soil NO_x emissions - Lightning NO_x emissions incorrectly spatially allocated or too small - Not enough recycling of alkyl nitrates to NO₂ - Not enough lofting of pollutants during large-scale convection #### **USING GEOGRAPHIC-WEIGHTED REGRESSION TO** #### ESTIMATING PM_{2.5} AT HIGH SPATIAL RESOLUTION Notice the intra-urban variability → This is important for health studies! Product shown here is a 2008 annual average, but we have a daily product: - We use a MODIS AOD "gap-filling" technique [Lv et al., 2016; Lv et al., 2017] to derive daily AOD when it does not exist. - Work-in-progress! # PLEASE CHECK OUT THE RECENTLY ACCEPTED PAPER ON HI-RES OMI NO₂: Goldberg, D. L., Lamsal, L. N., Loughner, C. P., Lu, Z., and Streets, D. G.: A high-resolution and observationally constrained OMI NO₂ satellite retrieval, Atmos. Chem. Phys., https://doi.org/10.5194/acp-2017-219, accepted, 2017. ## Thank you! ### Funding Acknowledgments and Disclaimer This presentation was developed under Assistance Agreement No. RD83587101 awarded by the U.S. Environmental Protection Agency to Yale University. It has not been formally reviewed by EPA. The views expressed in this document are solely those of the authors and do not necessarily reflect those of the Agency. EPA does not endorse any products or commercial services mentioned in this presentation.