

HAQAST TT: Demonstration of the Efficacy of Environmental Regulations in the Eastern U.S.

Bryan Duncan, NASA Goddard Space Flight Center Jason West, University of North Carolina

The Team & Stakeholders

• Lead HAQAST PIs: Bryan Duncan (NASA; 80%) & Jason West (UNC; 100%)

• AQ/Health Management Contacts

- o Susan Wierman (MARAMA)
- o Tad Aburn (MDE)
- o John Walker (EPA)
- o Fuyuen Yip (CDC/NCEH)
- o Paul Miller (NESCAUM)
- o Anne Gobin (CT DEEP)

• Other HAQAST Participants

- o Mark Zondlo (Princeton U.; 60%)
- o Yang Liu (Emory U.; 40%)
- o Ted Russell (Georgia Tech; 34%)
- o Arlene Fiore (Columbia U.; 10%)
- o Daven Henze (U. Colorado; 10%)
- O Daniel Tong (George Mason U.; 5%)
- o Pat Kinney (Boston U.)
- Susan Anenberg (George Washington U.)
- o Lok Lamsal (NASA)

Tiger Team Schematic

Trends in Ozone, <u>Precursors</u> & Ozone Production

https://airquality.gsfc.nasa.gov/

NO₂ website developed under AQAST

Tiger Team Tasks Completed

- Updated OMI NO₂ trends through 2016.
- Added 125 new U.S. cities.
- Added an OMI NO₂ U.S. animation (2005-2016): https://airquality.gsfc.nasa.gov/video/changesnitrogen-dioxide-usa-2005-2014

Duncan, Lamsal

Ex. Washington, DC

Trends in Ozone, Precursors & Ozone Production

Henze & Lamsal (NO₂)

- OMI NO₂ trends & "nose-level" trends (Lamsal, Henze).
- Uncertainties in NO₂ retrievals (Henze, Lamsal).
- NO_x emission trend estimates with OMI NO₂ (Henze).

Estimating Health Benefits of NO₂ Reductions

What if emissions reductions had not been implemented?

Test period: July 2011 – A month of record setting heat for the East Coast

How many more Code Red ozone violations would have occurred if emissions had remained at 2002 levels?

C. Loughner, M. Follette-Cook, K. Pickering, B. Duncan, in prep.

How many lives were saved?

Concentration-Response (C-R) function: Levy et al. 2005

Avoided Morbidity

ER visits - Asthma: 1248

Hospital Admissions – Respiratory: 3801

Hospital Admissions – Pneumonia: 1595

EPA Environmental Benefits Mapping and Analysis Program – BenMAP

Trends in Ozone, Precursors & Ozone Production

2005 - 2015 monthly HCHO:NO₂ over New York City NO_x-limited NO_x-limited Transitional Jeannylasonojemanjjasonojemanjason

Russell

Southeast U.S.

Develop and apply empirical models for O₃ and PM over the SE US to provide alternative estimates of the response of O₃ and PM to precursor emissions and controls.

Is there a detectable decrease in OMI NO₂ since January 1st, 2017?

Duncan, Lamsal

Tier 3 Gasoline Sulfur Program

January 1st, 2017: Low-sulfur gasoline required to improve efficiency of catalytic converters.

Therefore, NO_x emissions reductions expected from cars & trucks.

Does OMI detect lower NO₂?

Fly-in-the-ointment:

Meteorological variability.

Trends in Ozone, Precursors & Ozone Production

- Surface O₃ cannot be inferred from satellite data.
- Surface monitor O₃ trends (Fiore, Henze?).
- Model surface O₃
 - o Posterior simulations with satellite-constrained NO_x & SO₂ emissions (Henze).
 - o Global MERRA-2/GMI CTM model trends (1980-2016) (Duncan).
 - N. America Chemical Reanalysis (NACR) for 2009—present provides blended surface concentrations from NOAA National AQ Forecast & EPA surface monitors (Daniel Tong).
 - o EPA CMAQ simulation for the U.S. from 1990-2010 at 36 km resolution.

Trends in PM & Precursors

OMI SO₂ animation (2005-2016) to the AQ website.

https://airqualitv.gsfc.nasa.gov/video/sulfur-dioxide-usa

Trends in PM & Precursors

OMI SO₂

Trends in Ozone, <u>Precursors</u> & Ozone Production

Zondlo (NH₃)

- IASI NH₃ oversampling algorithm for high-resolution NH₃ maps (K. Sun, X. Guo)
- Examining trends in SE PA, southern DE, and eastern NC agricultural regions (+ urban)
- Also comparing to Ammonia Monitoring Network trends where possible (D. Pan)

Above: Comparison of AMoN and IASI within ±30 km window for central NJ (low NH₃ site)

Most AMoN sites not located near sources in eastern US!

Trends in PM & Precursors

- Surface PM can be inferred from satellite data with a chemistry transport model.
 - O Dalhousie satellite-based estimates (multi-year average: 1998-2012)
- Surface monitor PM trends
 - O Combine satellite-based [PM_{2.5}] estimates with CTM simulations in a Bayesian ensemble modeling framework to evaluate the long-term trends in PM_{2.5} over NY state (Liu whole Eastern U.S. too?).
- Model surface PM
 - o Global MERRA-2/GMI CTM model trends (1980-2016) (Duncan).
 - N. America Chemical Reanalysis (NACR) for 2009—present provides blended surface concentrations from NOAA National AQ Forecast & EPA surface monitors (Daniel Tong).
 - o EPA CMAQ simulation for the U.S. from 1990-2010 at 36 km resolution

Air Pollution-Related Deaths in the US

Global Burden of Disease results for the US in 2015 (Cohen et al., 2017):

Ambient PM_{2.5}: 88,400 (66,800 – 115,000) deaths

Ambient Ozone: 11,700 (4,400 – 19,600) deaths

1 in 26 US deaths

Estimation of Health Benefits

- Estimate of the total burden of O₃ and PM_{2.5} on premature human mortality for the US population in each year (West) using 3 datasets:
 - o EPA's 21-year CMAQ simulation (1990-2010)
 - O Daniel Tong's Chemical Reanalysis (2009-2015)
 - o Dalhousie PM_{2.5} dataset (1998-2012 average)
- Asthma exacerbation and incidence from $PM_{2.5}$, O_3 , and NO_2 individually 0.1°x0.1° (Anenberg, Kinney, West).

US Air Pollution Trends (1990-2010)

Results from a 21-year CMAQ simulation by the EPA (Gan et al. 2015; 2016)

PM_{2.5} Mortality Trends (1990-2010)

- PM_{2.5} mortality decreased by 53% from 123,700 (70,800-178,100) deaths in 1990 to 58,600 (24,900-98,500) in 2010.
- Without the decrease in $PM_{2.5}$ since 1990, the burden would have only decreased by 24%.
- $PM_{2.5}$ reductions since 1990 have decreased deaths in 2010 by about 35,800.

O₃ Mortality Trends (1990-2010)

- Ozone mortality increased by 13% from 10,900 (3,700-17,500) deaths in 1990 to 12,300 (4,100-19,800) in 2010.
- Without the decrease in ozone since 1990, the burden would have increased by 55%.
- Ozone reductions since 1990 have decreased deaths in 2010 by about 4,600.

Communications

Communications

Complementary Approaches

- Hire a Communications writer (identifying candidate)
- Make use of NASA resources
 - o Web developer to augment airquality.gsfc.nasa.gov
 - O Cool stories often are chosen for press releases (e.g., 2014 & 2015 AQAST AQ campaigns), Earth Observatory stories (e.g., Jin & Fiore), etc.
- Make use of university press releases from HAQAST members

Potential Deliverables (identify with Stakeholder input)

- Summary report
- Augmented website with new tabs: "O₃", "PM", "NO₂", and "Health"
 - O Downloadable fact sheets, images, etc.

Beefing Up the AQ Website

Next Steps

- TT members to complete remaining analyses on air pollution trends and concomitant health benefits
- December telecon with TT members prepare summary presentation
- January telecon with Stakeholders solicit their feedback
- Begin work on modifying AQ website
- Communications writer to iterate with Stakeholders on TT deliverables (e.g., fact sheets, website, etc.)

Extra Slides

Is there a detectable decrease in NO_2 since January 1st, 2017?

Duncan, Lamsal

OMI NO₂ Data (March-May Average)

Simulated Trends in Ozone & PM

General Overview on the MERRA-2 GMI Global Simulation

- NASA GMAO/614 GEOS-5 Replay simulation for the MERRA-2 period (1980 2016, continuing into the future as emission data sets become available)
- Replay is a constrained dynamics run using 3 hourly ASM (U, V, T, P) fields from MERRA-2
- Using the native MERRA-2 resolution (run at C180 or 0.5° and output on same MERRA-2 horizontal grid (0.625° x 0.5°)
- Including full Stratospheric and Tropospheric chemistry from the Global Modeling Initiative (GMI) chemical mechanism
- Also includes the GOCART aerosol module with SU, DU, SS, OC, BC, and NI
- The simulation is available to all those with access to NCCS Discover right now and we will be working to make it available through OpenDAP (or by contacting Luke Oman, e-mail: luke.d.oman@nasa.gov)

Particulate Matter (PM_{2.5})

Total $PM_{2.5} = DU_{2.5} + SS_{2.5} + SU + NI_{2.5} + NH_4 + OC + BC$

64

Example: Jan 15, 1998 1230 Zata Min = 0.1, Max = 4.78E+02, Mean = 15.75

Particulate Matter (PM_{2.5})

Total $PM_{2.5} = DU_{2.5} + SS_{2.5} + SU + NI_{2.5} + NH_4 + OC + BC (in <math>\mu g / DC + BC$)

Other Individual Components of PM_{2.5}

Note different scale 0-20 vs. 0-80 (μ g /m³)

Air Quality Health Indicies

Example of the Canadian AQHI for Aug. 4, 1988 22z - O₃, NO₂, PM_{2.5}

