Connecting air quality and health with management: Progress from the UNC HAQAST Team

J. Jason West
Environmental Sciences & Engineering
University of North Carolina, Chapel Hill
west.web.unc.edu
@ProfJasonWest
Global Mapping of Ozone Surface Concentration for Global Burden of Disease

- A first global map has been delivered and used in GBD 2017, another will be delivered next month for GBD 2019.
- 2 papers (Chang, GMD).

Global Air Quality and Health Co-benefits of the Paris Agreement Pledges

- Completing analysis of emissions from GCAM and planning to start simulations this summer.

Tiger Team: Efficacy of Environmental Regulations in the Eastern US

- Trends in US air pollution-related deaths since 1990
 - 1 paper published (Zhang, ACP), 1 in preparation.

Tiger Team: California fires

- Mapping pollutant concentrations, and analyzing health impacts.

Tiger Team: Global indicators

- Global indicators of surface ozone.

Total 4 papers published, many more in preparation.
Goal: Estimate global surface ozone concentrations by statistically fusing global ozone observations and an ensemble of global models.

Stakeholder partners: Global Burden of Disease Assessment – Michael Brauer (UBC), Rick Burnett (Health Canada), Bryan Hubbell (EPA).

Team: Jason West, Marc Serre, Marissa Delang, Jacob Becker, Stephanie Cleland, Elyssa Collins (UNC), Owen Cooper, Kai-Lan Chang (U Colorado & NOAA)
A new method (M^3Fusion v1) for combining observations and multiple model output for an improved estimate of the global surface ozone distribution

Kai-Lan Chang^1,2,3, Owen R. Cooper^2,3, J. Jason West^4, Marc L. Serre^4, Martin G. Schultz^5, Meiyun Lin^6,7, Virginie Marécal^8, Béatrice Josse^8, Makoto Deushi^9, Kengo Sudo^10,11, Junhua Liu^12,13, and Christoph A. Keller^12,13,14

Ozone metric: 2008-2014 average of 6-month average 8-hr. daily maximum surface ozone concentration
Mapping Global Surface Ozone Concentrations for GBD 2017

Step 1 – Spatial interpolation of TOAR measurements

4801 sites, averaged within 2°x2° grid cells
Step 2 – Evaluate each model with respect to observations

<table>
<thead>
<tr>
<th>Model ID</th>
<th>Group</th>
<th>Resolution</th>
<th>Meteorological Forcing</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHASER</td>
<td>Nagoya University; Japan Agency for Marine-Earth</td>
<td>$2.8^\circ \times 2.8^\circ$</td>
<td>C2</td>
<td>Sudo et al. (2002a, b); Watanabe et al. (2011)</td>
</tr>
<tr>
<td>(MIROC-ESM)</td>
<td>Science and Technology (JAMSTEC), Japan</td>
<td>$2.5^\circ \times 2^\circ$</td>
<td>C2</td>
<td>Oman et al. (2011)</td>
</tr>
<tr>
<td>GEOSCCM</td>
<td>NASA Goddard Space Flight Center, USA</td>
<td>$2^\circ \times 2^\circ$</td>
<td>C1SD</td>
<td>Lin et al. (2012, 2014, 2017)</td>
</tr>
<tr>
<td>GFDL-AM3</td>
<td>NOAA Geophysical Fluid Dynamics Laboratory, USA</td>
<td>$2^\circ \times 2^\circ$</td>
<td>C1SD</td>
<td>Lin et al. (2012, 2014, 2017)</td>
</tr>
<tr>
<td>G5NR-Chem</td>
<td>NASA Goddard Space Flight Center, USA</td>
<td>$0.125^\circ \times 0.125^\circ$</td>
<td>+</td>
<td>Hu et al. (2018)</td>
</tr>
<tr>
<td>MOCAGE</td>
<td>Centre National de Recherches Météorologiques; Météo France, France</td>
<td>$2^\circ \times 2^\circ$</td>
<td>C2</td>
<td>Josse et al. (2004); Teyssèdre et al. (2007)</td>
</tr>
<tr>
<td>MRI-ESM1r1</td>
<td>Meteorological Research Institute, Japan</td>
<td>$2.8^\circ \times 2.8^\circ$</td>
<td>C2</td>
<td>Adachi et al. (2013)</td>
</tr>
</tbody>
</table>

Interpolated observations
Multi-model mean
Step 3 – Find the linear combination of models in each world region that minimizes error with respect to the interpolated measurement surface.
Mapping Global Surface Ozone Concentrations for GBD 2017

Step 4 – Bias correct within 2° of observation sites (using interpolated surface)

Final Fused Ozone Product

• GBD 2017 – 470,000 (180,000 – 770,000) deaths globally
Global Ozone Mapping for GBD 2019

- Produce ozone maps for all years from 1990 to 2017.

- Perform a new data fusion with observations using Bayesian Maximum Entropy method.

- Add new observations from China and elsewhere, updated models.

- Add fine spatial structure using NASA G5NR (0.125°).

- New maps have nearly been completed for 1990 to 2010.

- See poster by Jacob Becker and Marissa DeLang
Bayesian Maximum Entropy Methods
Global Ozone Mapping for GBD 2019

Observations for 2005

M3Fusion for 2005

CAMP ANALYSIS for 2004 2005 2006

BME Estimate for 2005
Goal 1: Map PM$_{2.5}$ during the Oct. 2017 wildfires, fusing together observed & modeled PM$_{2.5}$ concentrations

- Surface observation data from both FRM/FEM & temporary monitoring stations
- Model data from BAAQMD CMAQ run

maps for Oct. 10, 2017, 24-hr average PM$_{2.5}$
Goal 2: Use the PM$_{2.5}$ map to estimate the acute health impact of the Oct. 2017 wildfires, specifically the attributable respiratory hospital admissions.

Future work will extend this approach to more health endpoints and pollutants.

- See poster by Stephanie Cleland
Health Benefits of Decreases in PM$_{2.5}$ and Ozone in the United States, 1990-2015

Omar Nawaz, Yuqiang Zhang, Daniel Q. Tong, Aaron van Donkelaar, Randall Martin, J. Jason West

* Air pollutant datasets:
 - A 21-year CMAQ simulation (1990-2011) EPA
 - N. America PM$_{2.5}$ satellite-derived data combined with a model and surface observations (1999-2012) SAT

* We use annual county-level population and baseline cause-specific mortality rates from the CDC to assess air pollution mortality in each year.
Trends in PM$_{2.5}$ (SAT)
US PM$_{2.5}$-related deaths

Zhang, ACP 2018; Nawaz, in prep.
Comparison with Other Studies ($PM_{2.5}$)

Zhang, ACP 2018; Nawaz, in prep.
PM$_{2.5}$ mortality decreased by 53% from 123,700 (70,800-178,100) deaths in 1990 to 58,600 (24,900-98,500) in 2010.

Without the decrease in PM$_{2.5}$ since 1990, the burden would have only decreased by 24%.

PM$_{2.5}$ reductions since 1990 have decreased deaths in 2010 by about 35,800.
US O_3-related deaths

Zhang, ACP 2018; Nawaz, in prep.
Comparison with Other Studies (O_3)

Zhang, ACP 2018; Nawaz, in prep.
Ozone mortality increased by 13% from 10,900 (3,700-17,500) deaths in 1990 to 12,300 (4,100-19,800) in 2010.

Without the decrease in ozone since 1990, the burden would have increased by 55%.

Ozone reductions since 1990 have decreased deaths in 2010 by about 4,600.
In the US, air pollution kills:

109,000 (2017 from GBD), 1 in 25 US deaths
47,000 (2015 our work), 1 in 58 US deaths

Diabetes: 80,000
Influenza & pneumonia: 52,000
All suicides: 45,000
All transportation accidents: 43,000
Breast cancer: 42,000
All gun shootings: 39,000
Prostate cancer: 30,000
Parkinson’s: 30,000
Leukemia: 23,000
HIV AIDS: 6,000

2016 data from CDC
Global burden of disease of air pollution (2017)

Global Deaths per Year

Ambient PM$_{2.5}$ pollution: 2.9 (2.5 – 3.4) million
1 in 19 deaths globally!

Ambient ozone pollution: 0.47 (0.18 – 0.77) million

Household air pollution from solid fuels: 1.6 (1.4 – 1.9) million
1 in 45 deaths globally!

Ambient PM$_{2.5}$ pollution is the 8th leading risk factor for death globally.

Burnett et al. (PNAS, 2018) estimate 8.9 (7.5-10.3) million deaths from PM$_{2.5}$ in 2015.