A Real-Time System for Fusing Regional and Dispersion Model PM2.5 Fields

Frank Freedman1,5, Mohammad Al-Hamdan2,5, Seyedmorteza Amini3,4
Muhammad Barik2, Isa Cruz1,5, Cynthia Garcia4, Akula Venkatram3,
Minghui Diao1

1Department of Meteorology and Climate Sciences, San Jose State University
2Universities Space Research Association, MSFC
3Department of Mechanical Engineering, University of California Riverside
4Research Division, California Air Resources Board
5Center for Applied Atmospheric Research and Education

\textit{Stakeholder Groups: SCAQMD, BAAQMD, CARB, CalDPH}

\textbf{July 11, 2019}
\textit{Presented at HAQAST6 (Pasadena, CA)}
Fused Modeling
(Background)

• Combined regional & finescale modeled AQ fields
• 10s – 100s meter resolution
• Past Applications: CMAQ regional + AERMOD & R-LINE dispersion models

NOx Annual Avg (2005)

Atlanta

Bates et al. (2018)
Fused Modeling: Envisioned Area-of-Interest (AOI)
(Example, Alma Neighborhood, Downtown San Jose, CA)
Geostatistical Model: Regional PM2.5*
(Adapted for CA: HAQAST)

Approach
- Ground PM2.5 obs + MODIS AOD
- Daily 3-km PM2.5 Fields
- Computationally efficient

Al-Hamdan et al. (2009), Al-Hamdan et al. (2014)
https://wonder.cdc.gov/nasa-pm.html
Modeling System: Components

- **Regional PM2.5: Geostatistical Model (USRA-MSFC)**
 - AIRNOW ground PM2.5 & MODIS Dark Target 3-km AOD
 - 3-km fields using over California

- **Finescale PM2.5: Steady-State Dispersion Model (UC Riverside)**
 - Area and line sources
 - Same basic formulations as EPA AERMOD & R-LINE
 - Driven by hourly meteorology

- **HRRR Model Meteorology (NOAA ESRL): Real-Time Met Inputs**
 - 3-km CONUS, operational real-time
 - Drive dispersion model w initial fields of hourly 18-hour HRRR forecast runs
 - Archived at University of Utah Department Atmospheric Science (since mid 2016)

Dispersion model: Cimorelli et al. (2005), Snyder et al. (2013), Venkatram et al. (2013), https://www.mdpi.com/1660-4601/16/7/1252

HRRR Archive: Blaylock et al. (2017), http://hrrr.chpc.utah.edu/
Fusion Method
(Applied over a local AOI)

\[
PM2.5(x,y) = \text{Geostatistical}(x,y) + \text{Dispersion Model}(x,y) - \text{Dispersion Model}(x,y)
\]

\[
\text{Fused field over AOI} \quad \text{regional background} \quad \text{local variability across AOI} \quad \text{subtract avg of dispersion model field across AOI}
\]

() Spatial average over AOI
(can cover single or multiple regional grids)
Fused PM2.5
(Regional + Finescale)
(100 – 1000 m)

System Flowchart

One-day time lag

MODIS AOD (DT-3km)

Hours time lag

Ground PM2.5 (AIRNOW)

AOD-PM2.5 Regression Relationships (A Priori)

MODIS PM2.5 Model (Geostatistical) (USRA-MSFC)

Dispersion Model Setup for AOI (A Priori)

Line / Area Source Dispersion Model (UC Riverside)

Daily PM2.5 (Regional 3-km)

Daily PM2.5 (Finescale) (100s – 1000 m)

Fusion

Source, emissions, monitor data

HRRR Meteorology (hourly 3-km)
Applications to Date ...

- **Fused PM2.5 (Freeway Interchange)**
 - Downtown San Jose (H101/I280/I680)
 - 3 km AOI
 - 100 m resolution

- **MODIS-Derived PM2.5 (Geostatistical Model)**
 - (California, 3-km)
 - 3 km AOI
 - 100 m resolution

- **Fused PM2.5: Windblown Dust**
 - Imperial Valley (CA)
 - 20 x 30 km AOI
 - 3 km resolution

- **Fused PM2.5 (Freeway Traffic)**
 - Downtown Los Angeles (I5/H110)
 - 3 km AOI
 - 100 m resolution

- **Fused PM2.5 (Freeway Traffic)**
 - Downtown Sacramento (I80/H99)
 - 3 km AOI
 - 100 m resolution
Fused PM2.5 Field
(I80/H99 Interchange, Sacramento) (December 2017)

100 m resolution

H99

~ 25 ug/m³

~ 23 ug/m³

Observations

HRRR Model

Wind Rose Comparison: Model vs. Observations
(CARB Sacramento T St.; December 2017)
Implementation w IVAN Low-Cost Sensors
(Windblown Dust Events, Imperial Valley CA)
Dispersion Model Emissions Fitting
(Imperial Valley, Tiger Team 1)

https://www.mdpi.com/1660-4601/16/7/1252

IVAN data: https://ivan-imperial.org/
Comite Civico Del Valle; Luis Olmeda, Paul English, Edmund Seto, Jeff Wagner; English et al. (2017), Carvlin et al. (2017), Wong et al. (2018)
MAIAC AOD atop IVAN Low-Cost PM2.5
(Windblown Dust, Imperial Valley, HAQAST TT1)

Composite: Windblown Dust Events
(11 days, Spring 2016)

State Agency Monitors
Niland (N)
Westmorland (W)
Brawley (B)
El Centro (E)
Calexico (C)

strong WSW winds

Fusion Domain
Brawley / El Centro area

“high PM”

“low PM”

MAIAC

BAMS PM10

IVAN PM2.5 (small symbols)

AIRNOW PM2.5 (large symbols)
Dispersion Model Setup

Sediment supply field
Parajuli and Zender, 2017
https://doi.org/10.1016/j.aeolia.2018.05.004

Model Area Sources

DUSTRAN Model Emissions: Area_1(t), Area_2(t), Area_3(t)
Regress against IVAN PM2.5: determine c1, c2, c3
(independent set of 2017 springtime windblown dust days)
Fitted Dispersion Model PM2.5
(Imperial Valley, 20 Wind Blown Dust Days, March - June 2017)

\[y = 0.66x + 5.7 \]
\[r^2 = 0.53 \]

\[Emissions = c_1 \times Area_1(t) + c_2 \times Area_2(t) + c_3 \times Area_3(t) \]
\[c_1 = 0.06, \quad c_2 = 0.41, \quad c_3 = 0.13 \]
Fused Modeling: Fitted Dispersion Model
(Example Day: May 25, 2017)

Geostatistical

Fused: Geostatistical & Dispersion

AIRNOW Monitors
Niland (N)
Calexico (C)

Daily PM2.5 (µg/m3)
Model vs. IVAN PM2.5*
(Imperial Valley Windblown Dust Event, May 25, 2017)

The graphs compare the Geostatistical Model and the Fused Model: Geostatistical & Dispersion against the IVAN PM2.5 measurements. The Geostatistical Model shows a more scattered distribution, while the Fused Model has a tighter clustering around the diagonal line, indicating a better fit to the IVAN data.
Fused Modeling: Envisioned Area-of-Interest (AOI)
(Example, Alma Neighborhood, Downtown San Jose, CA)
Summary

• System is developed & running
• Results to date promising (limited & ongoing evaluation ...)
• Main challenges & future work
 – AOD-PM2.5 relationship for geostatistical model
 – Configuration of dispersion model for an AOI (Emissions? Sources?)
 – Long-term field evaluation at fine scale
 – Ongoing low-cost sensor development & deployments
Core Project: Downscaling Satellite Derived PM2.5 Fields for California using Dispersion Modeling

• 1. Satellite-derived PM$_{2.5}$ grids
 • Constructed preliminary daily AOD-derived PM$_{2.5}$ surfaces for California for 2006 - 2017;
 • System running in real-time at SJSU (http://www.met.sjsu.edu/weather/HAQAST/)
 • A review paper of satellite PM2.5 fields is in revision stage (JA&WMA) led by Minghui Diao w HAQAST co-authors.

• 2. Visualization of satellite-derived PM$_{2.5}$ grids (complete)
 • Develop visualization of MAIAC AOD and derived PM$_{2.5}$ on selected days (LA, Bay Area, Imperial Valley);
 • https://www.cloud-research.org/haqast-project

• 3. Dispersion model Downscaling
 • System running in real-time at SJSU (http://www.met.sjsu.edu/weather/HAQAST/)
 • Published important developmental work: https://www.mdpi.com/1660-4601/16/7/1252
 • Conference paper on approach: http://www.met.sjsu.edu/weather/HAQAST/articles/Freedman_CMAS2017_Technical_Abstract.pdf

Tiger Teams

• TT#1: Community Scale PM2.5 Exposure (complete)
 • Completed UNC PAS low-cost samplers study w Maria Castillo, Pat Kinney, Jeff Wagner. Paper in revision stage (Atmos. Environ.)
 • Imperial Valley: Published article on dispersion modeling of 2017 PM2.5 using IVAN low-cost sensors
 https://www.mdpi.com/1660-4601/16/7/1252
 • Imperial Valley: A paper submitted to Remote Sensing of Environment on MAIAC AOD detection of windblown dust events

• TT#2 led by Susan O’Neill (PI) and Minghui Diao (co-I) (on-going)
 • Developing surface PM2.5 derived from satellite data for the duration of the California wildfire in October – November 2017 (finished)
 • Developing plume injection height product from satellite (finished)
 • A paper in preparation for wildfire projects with multiple groups

1 paper published
2 papers submitted (1 in revision stage)
3 in preparation