

Climate Change Has Many Impacts on Respiratory Health

OZONE

Higher temperatures lead to increased emissions and accelerate ozone formation

VULNERABLE POPULATIONS

(Children, the elderly, low income communities) already most impacted by air pollution; will face the greatest burden

ASTHMA & ALLERGY

sufferers face higher levels of ozone and pollen over a longer span of the year

HOSPITALIZATIONS & PREMATURE DEATHS

will increase as rising temperatures worsen air quality and exacerbate respiratory conditions Climate Change & Public Health

PARTICULATE POLLUTION EMISSIONS

will rise with increased energy demand, while black carbon (soot) particles also significantly contribute to global warming

WILDFIRES

and smoke exposure (fine particulates) will increase as hotter, dryer conditions are more prevalent in California

HEAT WAVES

will increase in length, frequency and intensity in California

***** AMERICAN LUNG ASSOCIATION

Worsening Air Quality

More Severe Wildfire Risk **Higher Temperatures** Increased Ozone **More Dust Storms Worsened Drought Increased Particle Pollution**

+ AMERICAN LUNG ASSOCIATION

HAQAST.

Wildfires

- HAQAST. More frequent and more severe
 - Downwind effects

- Huge increases in particle pollution
- Ozone worse, too

* AMERICAN LUNG ASSOCIATION

Wildfire Health Effects

+ AMERICAN LUNG ASSOCIATION

Wildfire Response

- Public information and health messaging
- Wildfire Smoke Shelters
 - Expanded smoke management and public education

* AMERICAN LUNG ASSOCIATION

NASA HEALTH AND AIR QUALITY APPLIED SCIENCES TEAM

Connecting NASA Data and Tools with Health and Air Quality Stakeholders

HAQAST is a collaborative team that works in partnership with public health and air quality agencies to use NASA data and tools for the public benefit. Here you can learn <u>about our team</u>, <u>partnerships</u>, and <u>newsworthy achievements</u>. You can also find <u>short tutorials for NASA's open-access satellite tools</u>.

What is "hay-kast"?

- Health and Air Quality Applied Sciences Team
- NASA-funded Applied Sciences Team
- 3 4-year funded project (thru summer '19 '20)
- 13 Members and 70+ co-investigators
- Mission: Connect NASA science with air quality and health applications
- ~ \$15 Million Total Cost
- Three types of work:
 - Member projects
 - Tiger team projects (collaborative)
 - Outreach, engagement, rapid response

NASA HEALTH AND AIR QUALITY APPLIED SCIENCES TEAM

Connecting NASA Data and Tools with Health and Air Quality Stakeholders

Potential Monitoring Site Purposes

 To Determine Compliance with National Ambient Air Quality Standards (NAAQS) A Role for Remote Sensing?

Not Now

- 2. To Develop Regional Pollution Trends in Urban and Rural Areas
- 3. To Evaluate the Effects of Population, Land Use and Transportation on Air Quality
- 4. To Evaluate Air Dispersion Models
- 5. To Provide Air Quality Information to the Public

Yes

Yes

Yes

Yes

NASA HEALTH AND AIR QUALITY APPLIED SCIENCES TEAM

Connecting NASA Data and Tools with Health and Air Quality Stakeholders

Why satellites?

- 690 of 3,100 CONUS counties have >= 1 EPA PM monitors
- On average, each PM monitor covers 180K people or 1800 km² in the 690 counties
- 79 million rural and suburban residents are not covered
- Annual EPA network operating cost: \$60M, probability of network expansion: ~0?

Can we do anything to improve the situation?

Satellite Aerosol Remote Sensing

- Satellite measures reflected sunlight
- Retrieval algorithms
 extract PM
 reflectance from total
 reflectance (PM +
 surface), and derive
 particle info

Relevant Satellite-Retrieved Parameters

- Aerosol Optical Depth (AOD or τ)
- Fine mode fraction
- Angstrom Exponent (α)
- Single Scattering Albedo (ω)
- Particle Sphericity
- Particle type (e.g., dust vs. smoke)
- Vertical extinction profile (limited coverage)

If most particles are concentrated and well mixed in the lower troposphere, satellite AOD contains a strong signal of ground-level particle concentrations. Long-range transport events will introduce errors and outliers.

AOD and PM2.5 are different

AOD – Column integrated value (TOA to surface) - Optical measurement of ambient particle loading.

 $PM_{2.5}$ – dry mass concentration for particles less than 2.5 μm in aerodynamic diameter at ground level

AOD – PM Relation

$$C = \frac{4\rho r_e}{3Q} \times \frac{f_{PBL}}{H_{PBL}} \times AOD$$

 $\begin{array}{c} \rho - \text{particle density} \\ Q - \text{extinction coefficient} \\ r_e - \text{effective radius} \\ f_{PBL} - \% \text{ AOD in PBL} \\ H_{PBL} - \text{mixing height} \end{array} \qquad \begin{array}{c} \textbf{Composition} \\ \textbf{Size distribution} \\ \textbf{Vertical profile} \\ \textbf{Vertical profile} \\ \end{array}$

These factors cause the AOD-PM $_{2.5}$ association to vary in time and space

Modeling Idea

Advanced PM Models

- Multiple linear regression (Liu et al. 2005)
- Linear mixed effects models (Lee et al. 2011)
- Geographically weighted regression (Hu et al. 2013)
- Generalized additive model (Liu et al. 2009, Strawa et al. 2014)
- Hierarchical models (Kloog et al. 2012, Shaddick et al. 2018)
- Bayesian models (e.g., Chang et al. 2013, Geng et al. 2018)
- Fusion models (e.g., van Donkelaar et al. 2015, Friberg et al. 2018)
- Machine learning models
 - Artificial neural network (e.g., Gupta et al. 2009, Di. et al. 2016)
 - Random forest (e.g., Hu et al. 2017, Meng et al. 2018)
 - Ensemble ML models (e.g., Xiao et al. 2018)

The Use of Satellite Models

- Currently
 - Spatial trends of PM_{2.5} at urban to global level
 - Daily to interannual variability of $PM_{2.5}$
 - Exposure assessment for health effect studies
- In the near future
 - Improved coverage and accuracy
 - Pollution episodes (wildfires, dust storms, etc.)
 - Hourly variability of PM_{2.5} and ozone
 - Environmental justice issues
- For regulation
 - Justification for exceptional events
 - Development and evaluation of emissions inventory
 - Evaluation of policy efficacy

Questions?

Use the question function at the lower right of your screen

Be sure to check out our upcoming webinars. For all info, visit haqast2020

