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Global burden of disease of air pollution (2017)

GBD 2017 Team, Lancet, 2018

Global Deaths per Year

Ambient PM2.5 pollution:  2.9 (2.5 – 3.4) million

Ambient ozone pollution:  0.47 (0.18 – 0.77) million

Household air pollution from solid fuels:  1.6 (1.4 – 1.9) million

1 in 19 deaths 
globally!

1 in 45 deaths 
globally!

Ambient PM2.5 pollution is the 8th leading 
risk factor for death globally.

Burnett et al. (PNAS, 2018) estimate 
8.9 (7.5-10.3) million deaths from 
PM2.5 in 2015.  



In the US, air pollution kills:  
109,000 (2017 from GBD), 1 in 25 US deaths

47,000 (2015 our work), 1 in 58 US deaths

2016 data from CDC

Diabetes: 80,000
Influenza & pneumonia: 52,000
All suicides: 45,000
All transportation accidents: 43,000
Breast cancer: 42,000
All gun shootings: 39,000
Prostate cancer: 30,000
Parkinson’s: 30,000
Leukemia: 23,000
HIV AIDS: 6,000



High-quality, accurate PM2.5
measurements, readily available

Space/time coverage, knowledge 
of atmospheric physics and 
chemistry & fire emissions

Space/time coverage, information 
on smoke plume location

Satellite AOD-Derived PM2.5

Oct. 
10

Oct. 
10

Monitoring Station PM2.5 CMAQ Model PM2.5

Oct. 
10

Available Data and Limitations



Methods: Bayesian Maximum Entropy

• Estimates concentrations at 
unmonitored locations using 
modern space/time geostatistics
to combine site-specific and 
general knowledge
– Site-specific knowledge:  values at a 

known s/t location
– General knowledge: mean trend, 

covariance, variance

• Treats observed values as hard or 
soft data
– Influence of observations decreases 

with distance given s/t correlation. 

• Treats models or satellites as soft 
data

Christakos and Serre (2000); Christakos et al. (2001)



Methods: CAMP correction

• Constant Analysis of Model 
Performance (CAMP) 

• Corrects for model / satellite 
bias differentially over the 
range of modeled values

Reyes et al. (2017)



BME Data Fusion Applications

1) Global mapping of ozone concentrations, 1990-
2017, at fine resolution to support the Global 
Burden of Disease Assessment

2) Mapping of PM2.5 from the October 2017 
California wildfires



Mapping Global Surface Ozone Concentrations
Goal:  Estimate global surface ozone concentrations by 

statistically fusing global ozone observations and an 
ensemble of global models. 

Stakeholder partners:  Global Burden of Disease Assessment –
Michael Brauer (UBC), Rick Burnett (Health Canada), Bryan 
Hubbell (EPA).  

Team:  Marissa Delang, Jacob Becker, Stephanie Cleland, 
Elyssa Collins, Marc Serre, Jason West (UNC), Owen 
Cooper, Kai-Lan Chang (U Colorado & NOAA), Martin 
Schultz, Sabine Schroder (Julich), CCMI and NASA 
modelers



Ozone metric: 2008-2014 average of 6-month average 8-hr. 
daily maximum surface ozone concentration



Global Ozone Mapping for GBD 2017

Fused ozone surface concentration 
used by GBD 2017

Chang et al. (GMD, 2019)



Improvements to M3Fusion Method

1. Yearly output 1990 – 2017
2. Additional observations and models
3. Smooth weighting of observations across space (BME data 

fusion)
4. Time influence of observations (BME data fusion)
5. Spatial pattern from fine resolution model output



Data Sources

■ Tropospheric Ozone Assessment 
Report (TOAR)
– 1990 – 2017

■ Chinese National Environmental 
Monitoring Network (CNEMC)
– 2013 – 2017



Ground Level Observations

Ozone season daily maximum 8 hour mixing ratio (OSDMA8)
- Annual maximum of the 6-month running mean of the monthly average 

daily maximum 8-hour mixing ratio



Atmospheric Model Output

Model Years Resolution Experiment

CESM1 CAM4-Chem 1990-2010 1.9° ´ 2.5° CCMI REF-C1SD
CESM1 WACCM 1990-2010 1.9° ´ 2.5° CCMI REF-C1SD
CHASER 1990-2010 2.8° ´ 2.8° CCMI REF-C1SD
GFDL-AM3 1990-2014 2° ´ 2.5° CCMI REF-C1SD
GFDL-AM4 2010-2016 1° ´ 1.25° CMIP6
MERRA2-GMI 1990-2017 0.5° ´ 0.625° CCMI REF-C1SD
MOCAGE 1990-2016 2° ´ 2° CCMI REF-C1SD
MRI-ESM 1990-2010 2.8° ´ 2.8° CCMI REF-C1SD
MRI-ESM2 2011-2017 2.8° ´ 2.8° CMIP6



M3Fusion Model Composite



Bayesian Maximum Entropy (BME) Framework

Observations

Multi-model Composite

Residuals



Covariance

Range of influence of a measurement to predict other 
concentrations in space and time 

Spatial Covariance Temporal Covariance

𝐶" 𝑟, 𝜏 = 0 = 60 0.7 exp −
3𝑟
1.2

+ 0.3 exp −
3𝑟
25 𝐶" 𝑟 = 0, 𝜏 = 60 0.75 exp −

3𝜏
80

+ 0.25 exp −
3𝜏
1.5



Bayesian Maximum Entropy (BME) Framework

BME Mean and 
Variance

Observations

Multi-model Composite

Residuals

Covariance



BME Output

BME Mean

■ Matches observation at 
monitoring stations

■ Influence of observation drops off 
according to space/time 
covariance

■ Away from observations, output 
is multi-model composite

BME Variance

■ Low near observations







Influence of Observations Across Time



Fine Resolution Addition

BME Coarse Resolution (0.5°) NASA G5NR-Chem (0.1°) BME Fine Resolution (0.1°)

0.5° grid cell over Charlotte, North Carolina in 2005

NASA G5NR-Chem model: 0.125° July 2013 - June 2014

Average = 55.832 ppb Average = 59.487 ppb Average = 55.832 ppb



Method Evaluation

Scenario RMSE (ppb) MSE (ppb2) ME (ppb) R2

Multi-model Mean 13.76 189.23 -11.00 0.28

Multi-model Composite 7.82 61.14 -1.07 0.30

Space Only Corrected 5.61 31.50 0.17 0.63

Space Time Corrected 3.99 15.94 -0.01 0.81

Fine Resolution 5.50 30.21 -0.22 0.64



Key Features

• Yearly ozone distribution (1990-2017)
• Incorporates observations and model output
• Observations influence both space and time
• Fine resolution (0.1 degree) according to fine resolution model

• Annual ozone maps were provided to the GBD team and will 
be used for GBD 2019 



Regional Air Model Performance (RAMP)

Just like CAMP, but each estimation point uses only the nearest n observations to 
correct the model

Still uses 3 years of data
(except first and last year)

Each year the n closest points are 
used

Restrict slope of correction ≥ 0



ESTIMATING WILDFIRE SMOKE CONCENTRATIONS 
DURING THE OCTOBER 2017 CALIFORNIA FIRES 
THROUGH BME SPACE/TIME DATA FUSION
Stephanie Cleland, Jason West, Marc Serre ● UNC-Chapel Hill ● HAQAST Webinar 3/5



INTRODUCTION
2017 N. CALIFORNIA FIRES

¡ Beginning October 8-9, 2017, a series of wildfires 
in N. California resulted in:
¡ Highest PM2.5 concentrations ever recorded in Bay 

Area

¡ 8,400 buildings destroyed, 100,000 people 
displaced, >185 hospitalized, 45 dead

¡ ~7.2 million people exposed to unhealthy air 

¡ Wildfires are occurring with increased 
frequency, intensity, and severity due to 
climate change

¡ Smoke exposure increases respiratory and 
cardiovascular morbidity and mortality

(Boegelsack et al, 2018; Reid et al, 2016)

INTRODUCTION ● GOALS    ● METHODS    ● RESULTS



INTRODUCTION
ESTIMATING SMOKE CONCENTRATIONS

Three primary datasets are used to characterize population-level exposure to wildfire emissions:

1. Monitoring Station Observations

2. Chemical Transport Models

3. Satellite-Based Measurements

INTRODUCTION ● GOALS    ● METHODS    ● RESULTS



INTRODUCTION
ESTIMATING SMOKE CONCENTRATIONS

Previous methods for estimating ground-level wildfire smoke concentrations:

¡ Spatial interpolation of observations

¡ Chemical transport models 

¡ Occasionally adjusted by monitoring data, satellite remote sensing data or post-processing statistical techniques

¡ Geostatistical methods combining observations with modeled and/or satellite-derived concentrations

¡ Data fusion, regression modeling, and machine learning methods

Combining multiple PM2.5 datasets often leads to improvements in PM2.5 estimations during a wildfire

(Koman et al, 2019;  Al-Hamdan et al, 2009)

INTRODUCTION ● GOALS    ● METHODS    ● RESULTS



GOALS

Produce accurate estimates of daily average ground-level PM2.5 concentrations during the Oct. 2017 fires by:

1. Using the Constant Air Quality Model Performance (CAMP) correction method to bias-correct CMAQ 
(CC-CMAQ) and AOD-estimated PM2.5  (CC-Sat) concentrations

2. Using the Bayesian Maximum Entropy (BME) framework to fuse monitoring station observations with CC-
CMAQ and/or CC-Sat output across space and time

3. Evaluating the accuracy of four different BME s/t kriging and data fusion methods to identify the BME 
methods and combination of PM2.5 data sources that best estimate ground-level PM2.5 concentrations 
during the fires

No prior study has evaluated the accuracy of combining all three datasets to estimate wildfire-related PM2.5 while 
correcting for the bias present in satellite and CTM data

INTRODUCTION ● GOALS ● METHODS    ● RESULTS

(Christakos et al, 2000; Reyes et al, 2017)



METHODS
DATA

To estimate smoke concentrations during the wildfires, three PM2.5 datasets were used:

1. Surface observations from:

¡ 114 EPA FRM/FEM monitoring stations across California, Oct. 1 – 31  (EPA’s air quality database)

¡ 49 temporary monitoring stations across California, Oct. 1 – 31 (US Forest Service)

2. Estimates from Community Multiscale Air Quality (CMAQ) model in the Central California region 
at a 4-km resolution from Oct. 3 – 20 (Bay Area Air Quality Management District)

3. Satellite-derived estimates from Moderate Resolution Imaging Spectroradiometer (MODIS) 
Terra Satellite Aerosol Optical Depth (AOD) data, Oct. 1 – 31 (NASA)

INTRODUCTION ● GOALS    ● METHODS ● RESULTS



METHODS
DATA 

High-quality, accurate PM2.5

measurements, readily available
Space/time coverage, knowledge of 
atmospheric physics and chemistry 
and fire emissions

Space/time coverage, information 
on smoke plume location

Satellite AOD-Derived PM2.5

Oct. 10Oct. 10

Monitoring Station PM2.5 CMAQ Model PM2.5

Oct. 10
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METHODS
BME FRAMEWORK 

¡ Estimates PM2.5 at unmonitored locations 
using modern s/t geostatistics to combine 
site-specific and general knowledge

¡ Site-specific knowledge:  PM2.5 at a known s/t 
location

¡ General knowledge: mean trend, covariance, variance

¡ Treats observed PM2.5 as hard data

¡ Treats CC-CMAQ, CC-Sat PM2.5 as soft data

(Christakos et al, 2000; Lee et al, 2012)

INTRODUCTION ● GOALS    ● METHODS    ● RESULTS



METHODS
SOFT DATA CREATION

2 steps were used to prepare the modeled and satellite AOD-estimated PM2.5 concentrations for BME data 
fusion: 

1. Conversion of MODIS AOD to PM2.5 using a simple linear regression 

2. CAMP-correct CMAQ (CC-CMAQ) model and AOD-estimated PM2.5 (CC-Sat) 

(NASA, 2019; Reyes et al, 2017)

INTRODUCTION ● GOALS    ● METHODS ● RESULTS



METHODS
AODàPM2.5 CONVERSION

1. Conversion of MODIS AOD to PM2.5 using a simple linear 
regression

¡ MODIS AOD paired with collocated daily avg. PM2.5 observations

¡ Simple linear regression trained on 75% of paired data to obtain 
formula à 25% of data used to validate

PM2.5 Estimation = Slope * AOD + Intercept

(NASA, 2019)

AOD AOD-Derived PM2.5

INTRODUCTION ● GOALS    ● METHODS ● RESULTS

Oct. 10 Oct. 10



METHODS
CAMP 

2. CAMP-correct CMAQ (CC-CMAQ) model and AOD-derived PM2.5 (CC-Sat) 

¡ Model the mean (λ1) and variance (λ2) of observed value as a function of estimated value, accounting for the non-linear and 
non-homoscedastic relationship between estimated and observed PM2.5 data 

(Reyes et al, 2017)

INTRODUCTION ● GOALS    ● METHODS ● RESULTS



METHODS
CAMP 

(Reyes et al, 2017)

CMAQ
Oct. 10

MSE 
(log-(µg/m3)2)

R2

(log-space)

CMAQ 0.703 0.410

CC-CMAQ 0.331 0.452

Sat 0.406 0.237

CC-Sat 0.389 0.229

INTRODUCTION ● GOALS    ● METHODS ● RESULTS

CC-CMAQ
Oct. 10

Sat
Oct. 10

CC-Sat
Oct. 10



METHODS
EVALUATING 4 APPROACHES

Using the BME Framework, 4 mapping methods were evaluated, using Mean Squared Error (MSE) and R2 values 
from cross-validations:

1. Space/time BME kriging on log-PM2.5 observations

¡ With and without temporary station data

2. BME data fusion of CC-CMAQ & log-PM2.5 observations

3. BME data fusion of CC-Sat & log-PM2.5 observations

4. BME data fusion of CC-CMAQ, CC-Sat, & log-PM2.5 observations

(Christakos et al, 2000)
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RESULTS
TEMPORARY STATIONS

¡ Use of temporary station data, while not FRM/FEM, 
improves accuracy of PM2.5 estimates by increasing 
the coverage of surface observations

¡ 114 stations à 163 stations

¡ 2670 s/t observations à 3621 s/t observations

Method MSE 
(log-(µg/m3)2)

R2

(log-space)

S/T BME Kriging on Obs
FRM Only

0.249 0.546

S/T BME Kriging on Obs
FRM + TEMP

0.139 0.740

INTRODUCTION ● GOALS    ● METHODS    ● RESULTS

Leave-one-out cross-validation results



RESULTS
TEMPORARY STATIONS FRM Only

Oct. 10

FRM + Temp
Oct. 10

¡ Use of temporary station data, while not 
FRM/FEM, improves accuracy of PM2.5
estimates by increasing the coverage of 
surface observations
¡ 114 stations à 163 stations

¡ 2670 s/t observations à 3621 s/t 
observations

¡ Use of temporary station data also 
refines smoke plume shape in Northern 
California

INTRODUCTION ● GOALS    ● METHODS    ● RESULTS



Method MSE 
(log-(µg/m3)2)

R2

(log-space)

Satellite-Derived PM2.5 (Sat) 0.406 0.237

CMAQ Model 0.703 0.410

CAMP-Corrected (CC)-Sat 0.389 0.229

CC-CMAQ 0.331 0.452

1. BME S/T Kriging on Obs 0.139 0.740

2. BME Fusion, Obs + CC-CMAQ 0.144 0.730

3. BME Fusion, Obs + CC-Sat 0.162 0.699

4. BME Fusion, Obs + CC-CMAQ + CC-Sat 0.159 0.708

RESULTS
COMPARISON OF 4 BME METHODS

¡ CAMP improves the accuracy 
of the CMAQ and satellite-
derived products

Leave-one-out cross-validation results

INTRODUCTION ● GOALS    ● METHODS    ● RESULTS



RESULTS
COMPARISON OF 4 BME METHODS

¡ CAMP improves the accuracy 
of the CMAQ and satellite-
derived products

¡ All BME s/t kriging and data 
fusion methods performed 
better than either of the 
standalone CMAQ and satellite-
derived products 

Method MSE 
(log-(µg/m3)2)

R2

(log-space)

Satellite-Derived PM2.5 (Sat) 0.406 0.237

CMAQ Model 0.703 0.410

CAMP-Corrected (CC)-Sat 0.389 0.229

CC-CMAQ 0.331 0.452

1. BME S/T Kriging on Obs 0.139 0.740

2. BME Fusion, Obs + CC-CMAQ 0.144 0.730

3. BME Fusion, Obs + CC-Sat 0.162 0.699

4. BME Fusion, Obs + CC-CMAQ + CC-Sat 0.159 0.708

Leave-one-out cross-validation results
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RESULTS
COMPARISON OF 4 BME METHODS

Method MSE 
(log-(µg/m3)2)

R2

(log-space)

Satellite-Derived PM2.5 (Sat) 0.406 0.237

CMAQ Model 0.703 0.410

CAMP-Corrected (CC)-Sat 0.389 0.229

CC-CMAQ 0.331 0.452

1. BME S/T Kriging on Obs 0.139 0.740

2. BME Fusion, Obs + CC-CMAQ 0.144 0.730

3. BME Fusion, Obs + CC-Sat 0.162 0.699

4. BME Fusion, Obs + CC-CMAQ + CC-Sat 0.159 0.708

¡ CAMP improves the accuracy 
of the CMAQ and satellite-
derived products

¡ All BME s/t kriging and data 
fusion methods performed 
better than either of the 
standalone CMAQ and satellite-
derived products 

¡ BME s/t kriging on observations 
produces most accurate 
estimates at monitoring station 
locations

Leave-one-out cross-validation results

INTRODUCTION ● GOALS    ● METHODS    ● RESULTS



RESULTS
COMPARISON OF 4 BME METHODS

¡ Fusing observations with CC-CMAQ provides best overall PM2.5 estimate 

¡ Better estimates PM2.5 if > ~35 miles from a station 

Radius cross-validation results

INTRODUCTION ● GOALS    ● METHODS    ● RESULTS



RESULTS
COMPARISON

¡ Fusing observations with 
CC-CMAQ provides 
best overall PM2.5
estimate 

¡ Adds knowledge of 
atmospheric chemistry 
and physics and fire 
emissions

S/T BME 
Kriging on 
Obs

Fusion, Obs 
+ CC-CMAQ

Fusion, Obs 
+ CC-Sat

Fusion, Obs + 
CC-Sat + 
CC-CMAQ

INTRODUCTION ● GOALS    ● METHODS    ● RESULTS



RESULTS
PM2.5 MAPS

¡ Fires had clear impact on air 
quality, with daily avg. PM2.5 >190 
µg/m3

¡ EPA identifies 24-hour average 
PM2.5 concentrations >150.5 
µg/m3 as very unhealthy

¡ During the fires, an estimated 
60,371 individuals were exposed 
to daily avg. PM2.5 >150.5 µg/m3 

¡ On Oct. 13, an estimated 57,013
individuals were exposed to daily 
avg. PM2.5 >150.5 µg/m3

Fusion, Obs + CC-CMAQ

INTRODUCTION ● GOALS    ● METHODS    ● RESULTS



AIR QUALITY MAPPING
RESULTS

¡ CAMP improves the accuracy of the CMAQ and satellite-derived products

¡ Use of temporary station data improves accuracy of PM2.5 estimates and refines smoke plume shape

¡ All four BME s/t kriging and data fusion methods performed better than either of the standalone CMAQ and 
satellite-derived products 

¡ BME s/t kriging on observations produces most accurate estimates at monitoring station locations

¡ Fusing observations with CC-CMAQ provides best overall PM2.5 estimate, especially in smoke-impacted, station-
scarce regions

¡ Fires had clear impact on air quality, reaching PM2.5 levels dangerous to human health

INTRODUCTION ● GOALS    ● METHODS    ● RESULTS



BME Data Fusion

• Our datasets are available for others to use upon request, 
for health impact assessment and epidemiology.  

• Fusing data from multiple sources usually performs 
better than single datasets.

• Flexible methods that are adaptable to a wide range of 
applications and input data.
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APPENDIX



INTRODUCTION
WILDFIRES & CLIMATE CHANGE

¡ Wildfires are occurring with increased 
frequency, intensity, and severity due 
to climate change, with larger burn areas 
and longer season 

¡ October 2018 wildfires (Camp Fire) were 
deadliest and most destructive wildfire 
season ever recorded in California 

¡ Recent Kincade Fire in N. California à
77,000+ acres burned, 180,000 people 
displaced, 1 million without power

(Boegelsack et al, 2018; CAL FIRE, 2019; Willingham & Garrett, 2019)



INTRODUCTION
IMPACT OF WILDFIRES

¡ Increased respiratory and cardiovascular 
morbidity and mortality 

¡ Exacerbation of COPD and asthma

¡ Increased risk of respiratory infection and 
CHF

¡ Increased hospital and ED admissions

¡ PM2.5 from wildfire smoke remains in the 
air for extended periods and can be 
transported over large distances 

¡ Need a framework to better understand 
the impacts of these fires

(Reid et al, 2016; Durán et al, 2014)



METHODS
MEAN TREND 

An informed composite mean trend (MT) in space and time is removed from the data to characterize systematic 
structures and trends over space and time

¡ Informed Separable s/t MT – Assumes that the MT of PM2.5 is a combination of a purely spatial and temporal MT

¡ Informed s/t Composite MT– Assumes that each s/t location has its own unique MT of PM2.5 observations across 
space & time

(Christakos et al, 2000; Lee et al, 2012)



METHODS
COVARIANCE

Human Activities

ar1 = 0.15 degrees, at1 = 16,425 days, c01 = 0.0636 (log-ug/m3)2

Weather-Related

ar2 = 4 degrees, at2 =365 days, c02 = 0.0142 (log-ug/m3)2

Wildfire-Related

ar3 = 2.5 degrees, at3 = 5 days, c03 = 0.441 (log-ug/m3)2
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METHODS
BME FRAMEWORK

Use of BME for mapping & assessing health risk of PM:

¡ Estimates of mortality risk differed among exposure models à using the BME framework to map PM2.5 resulted in 
better Cox proportional hazard model fit and larger effect size (Jerrett et al, 2017)

¡ Incorporating land-use regression (LUR) into BME framework to map PM2.5 across the United States resulted in a 
22% reduction in MSE over simple kriging (Reyes & Serre, 2014)

¡ Using a moving-window BME approach to map PM2.5 across the United States led to a significant reduction in 
estimation error à recommended for epidemiological studies investigating the effect of long-term exposure to 
PM2.5 (Akita, Chen, & Serre, 2012)

¡ BME led to improved, more meaningful estimates of the annual PM10 in the state of California, compared to 
traditional techniques of spatial kriging à the advantages of BME are particularly valuable when assessing health 
risks (Christakos et al, 2001)
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RESULTS
PM2.5 MAPS

¡ Fires had clear impact on 
air quality, reaching PM2.5 

levels dangerous to human 
health à Daily avg. PM2.5

>150.5 µg/m3

¡ EPA identifies 24-hour 
average PM2.5

concentrations >150.5 
µg/m3 as very unhealthy

¡ On Oct. 13, an estimated 
57,013 individuals were 
exposed to daily avg. 
PM2.5 >150.5 µg/m3

Fusion, Obs + CC-CMAQ
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RESULTS
COMPARISON BETWEEN KRIGING & FUSION

¡ Difference between PM2.5

estimations produced by 
BME s/t kriging on 
observations and BME 
data fusion of 
observations and CC-
CMAQ



RESULTS
BME VARIANCE


