Pollutant concentration mapping to support health impact assessment: global ozone concentrations, and PM from California wildfires

Global burden of disease of air pollution (2017)

Global Deaths per Year

Ambient PM_{2.5} pollution:

1 in 19 deaths

Ambient ozone pollution:

globally!

Household air pollution from solid fuels: 1.6 (1.4 – 1.9) million

1 in 45 deaths globally!

1 High systolic blood pressure

2 Smoking

3 High fasting plasma glucose

4 High body-mass index

5 Short gestation for birthweight

6 Low birthweight for gestation

7 Alcohol use

8 High LDL cholesterol

9 Child wasting

10 Ambient particulate matter

11 Low whole grains

12 High sodium

13 Low fruit

14 Unsafe water source

15 Impaired kidney function

16 Household air pollution

Ambient PM_{2.5} pollution is the 8th leading risk factor for death globally.

Burnett et al. (PNAS, 2018) estimate 8.9 (7.5-10.3) million deaths from PM_{2.5} in 2015.

GBD 2017 Team, *Lancet*, 2018

In the US, air pollution kills:

109,000 (2017 from GBD), 1 in 25 US deaths

47,000 (2015 our work), 1 in 58 US deaths

Diabetes: **80,000**

Influenza & pneumonia: 52,000

All suicides: 45,000

All transportation accidents: 43,000

Breast cancer: 42,000

All gun shootings: 39,000

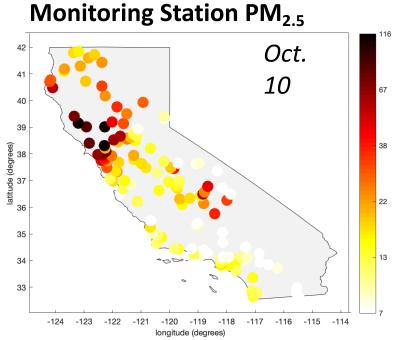
Prostate cancer: 30,000

Parkinson's: 30,000

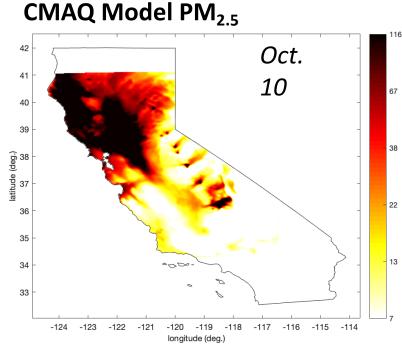
Leukemia: **23,000**

HIV AIDS: 2016 data from CDC

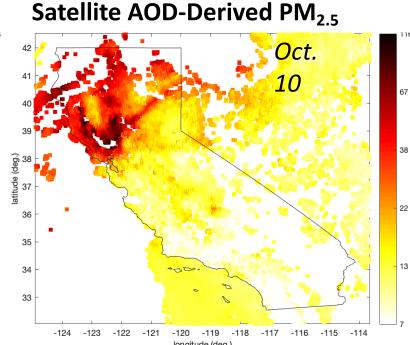
Available Data and Limitations



High-quality, accurate PM_{2.5} measurements, readily available



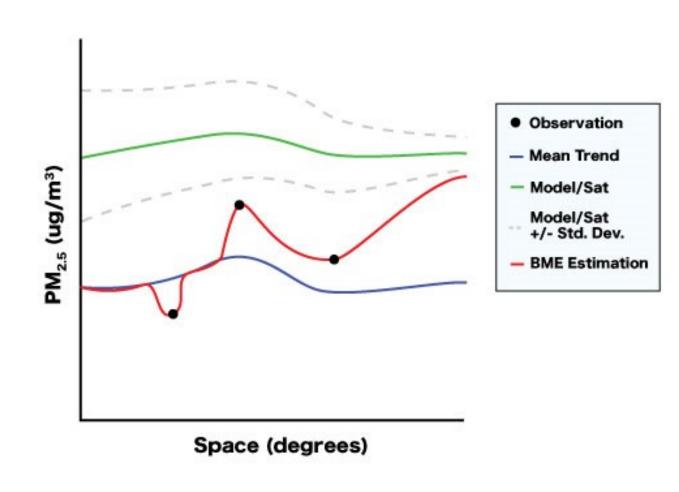
Space/time coverage, knowledge of atmospheric physics and chemistry & fire emissions



Space/time coverage, information on smoke plume location

Methods: Bayesian Maximum Entropy

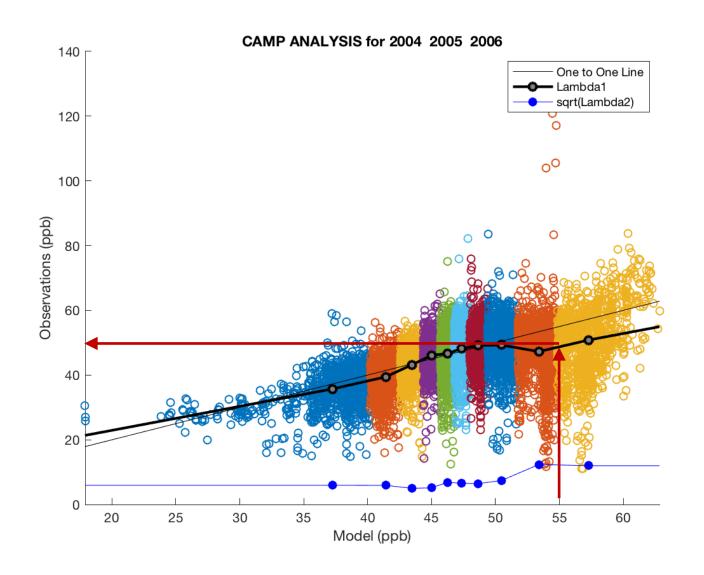
- Estimates concentrations at unmonitored locations using modern space/time geostatistics to combine site-specific and general knowledge
 - Site-specific knowledge: values at a known s/t location
 - General knowledge: mean trend, covariance, variance
- Treats observed values as hard or soft data
 - Influence of observations decreases with distance given s/t correlation.
- Treats models or satellites as soft data



Christakos and Serre (2000); Christakos et al. (2001)

Methods: CAMP correction

- Constant Analysis of Model Performance (CAMP)
- Corrects for model / satellite bias differentially over the range of modeled values



BME Data Fusion Applications

1) Global mapping of ozone concentrations, 1990-2017, at fine resolution to support the Global Burden of Disease Assessment

2) Mapping of PM_{2.5} from the October 2017 California wildfires

Mapping Global Surface Ozone Concentrations

Goal: Estimate global surface ozone concentrations by statistically fusing global ozone observations and an ensemble of global models.

Stakeholder partners: Global Burden of Disease Assessment – Michael Brauer (UBC), Rick Burnett (Health Canada), Bryan Hubbell (EPA).

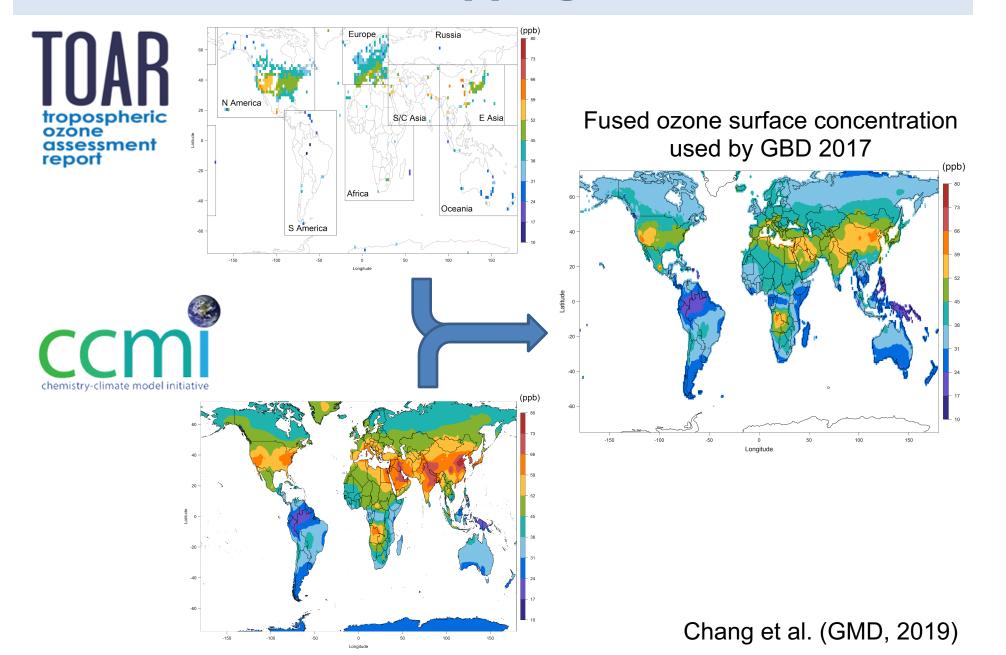
Team: Marissa Delang, Jacob Becker, Stephanie Cleland, Elyssa Collins, Marc Serre, Jason West (UNC), Owen Cooper, Kai-Lan Chang (U Colorado & NOAA), Martin Schultz, Sabine Schroder (Julich), CCMI and NASA modelers

A new method (M³Fusion v1) for combining observations and multiple model output for an improved estimate of the global surface ozone distribution

Kai-Lan Chang^{1,2,3}, Owen R. Cooper^{2,3}, J. Jason West⁴, Marc L. Serre⁴, Martin G. Schultz⁵, Meiyun Lin^{6,7}, Virginie Marécal⁸, Béatrice Josse⁸, Makoto Deushi⁹, Kengo Sudo^{10,11}, Junhua Liu^{12,13}, and Christoph A. Keller^{12,13,14}

Ozone metric: 2008-2014 average of 6-month average 8-hr. daily maximum surface ozone concentration

Global Ozone Mapping for GBD 2017

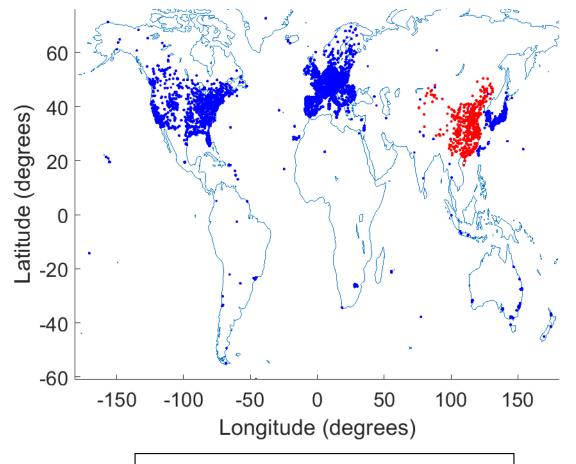


Improvements to M³Fusion Method

- 1. Yearly output 1990 2017
- 2. Additional observations and models
- 3. Smooth weighting of observations across space (BME data fusion)
- 4. Time influence of observations (BME data fusion)
- 5. Spatial pattern from fine resolution model output

Data Sources

- Tropospheric Ozone Assessment Report (TOAR)
 - *1990 2017*
- Chinese National Environmental Monitoring Network (CNEMC)
 - 2013 2017

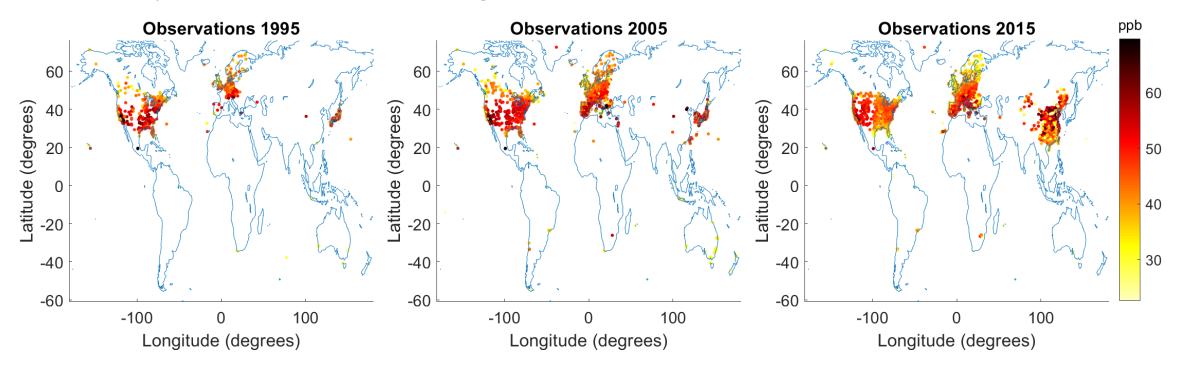


- TOAR locations (7,269 total)
- CNEMC locations (1,565 total)

Ground Level Observations

Ozone season daily maximum 8 hour mixing ratio (OSDMA8)

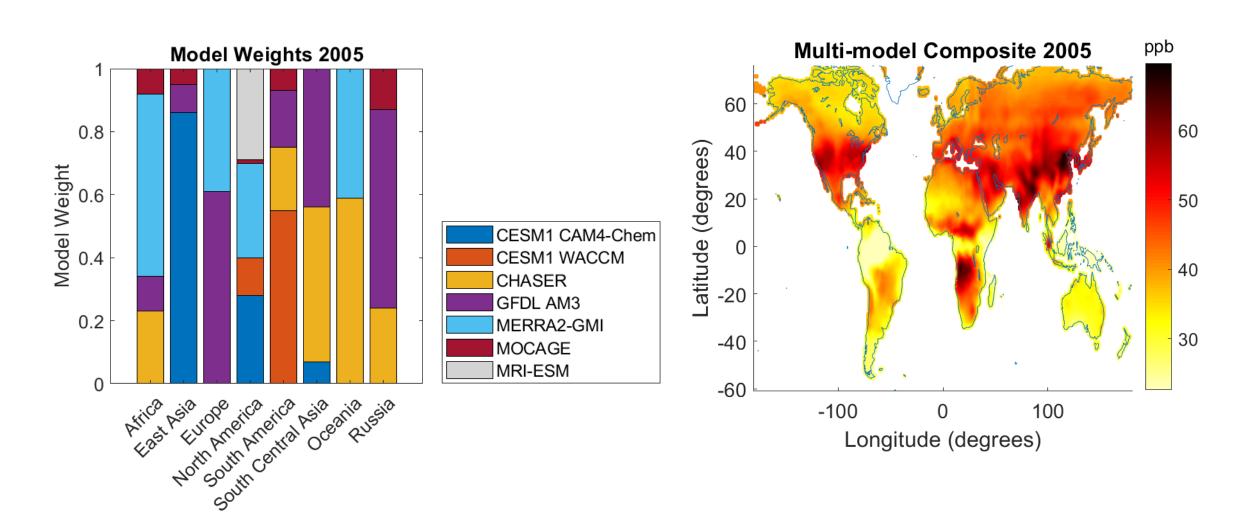
- Annual maximum of the 6-month running mean of the monthly average daily maximum 8-hour mixing ratio



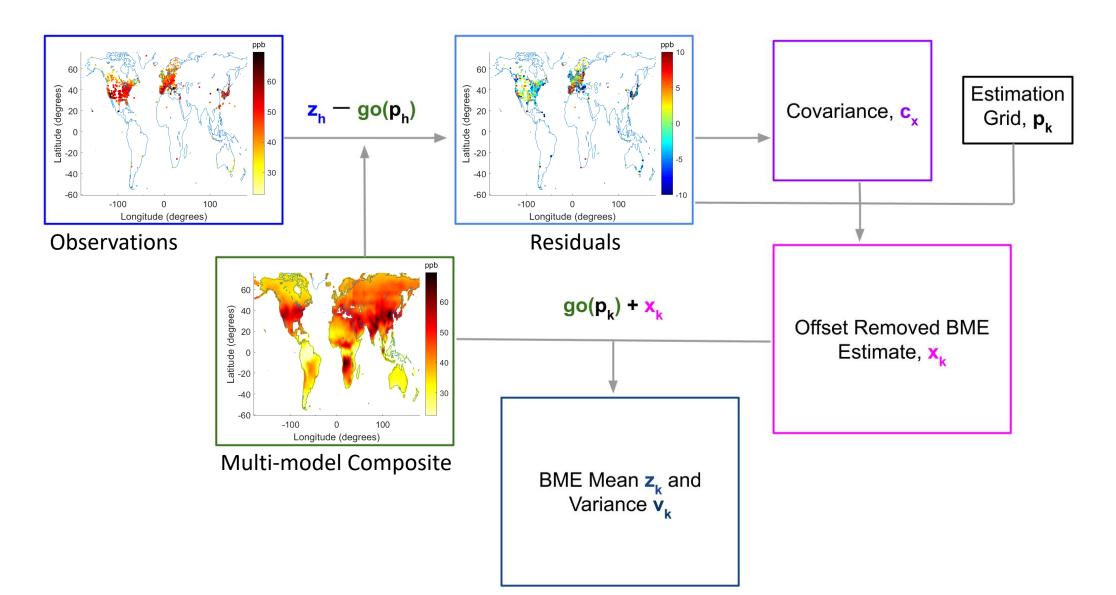
Atmospheric Model Output

Model	Years	Resolution	Experiment	
CESM1 CAM4-Chem	1990-2010	$1.9^{\circ} \times 2.5^{\circ}$	CCMI REF-C1SD	
CESM1 WACCM	1990-2010	$1.9^{\circ} \times 2.5^{\circ}$	CCMI REF-C1SD	
CHASER	1990-2010	$2.8^{\circ} \times 2.8^{\circ}$	CCMI REF-C1SD	
GFDL-AM3	1990-2014	$2^{\circ} \times 2.5^{\circ}$	CCMI REF-C1SD	
GFDL-AM4	2010-2016	1° × 1.25°	CMIP6	
MERRA2-GMI	1990-2017	$0.5^{\circ} \times 0.625^{\circ}$	CCMI REF-C1SD	
MOCAGE	1990-2016	2° × 2°	CCMI REF-C1SD	
MRI-ESM	1990-2010	$2.8^{\circ} \times 2.8^{\circ}$	CCMI REF-C1SD	
MRI-ESM2	2011-2017	$2.8^{\circ} \times 2.8^{\circ}$	CMIP6	

M³Fusion Model Composite

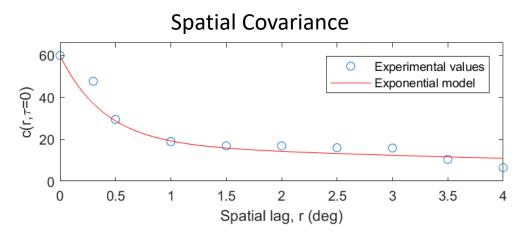


Bayesian Maximum Entropy (BME) Framework

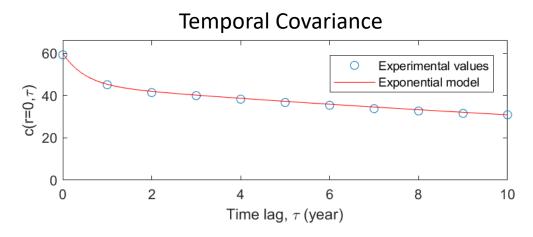


Covariance

Range of influence of a measurement to predict other concentrations in space and time



$$C_{x}(r, \tau = 0) = 60 \left(0.7 \exp\left(-\frac{3r}{1.2}\right) + 0.3 \exp\left(-\frac{3r}{25}\right) \right)$$



$$C_x(r = 0, \tau) = 60 \left(0.75 \exp\left(-\frac{3\tau}{80}\right) + 0.25 \exp\left(-\frac{3\tau}{1.5}\right) \right)$$

Bayesian Maximum Entropy (BME) Framework



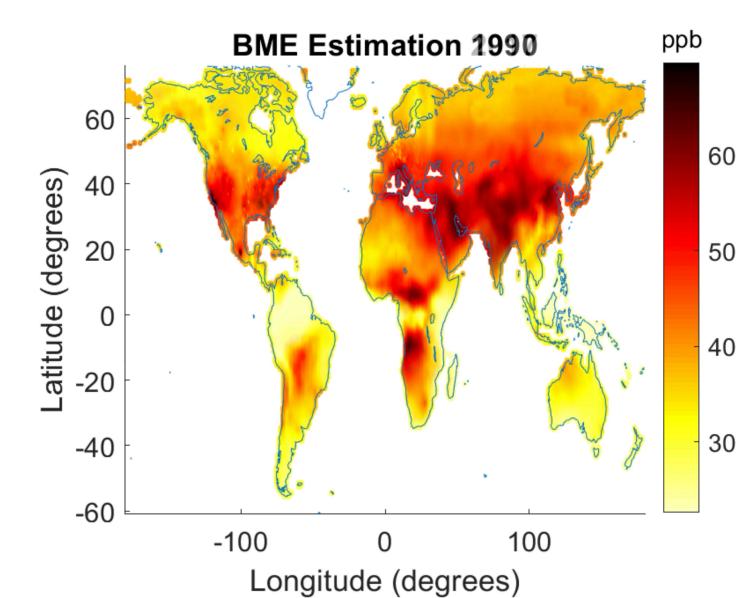
BME Output

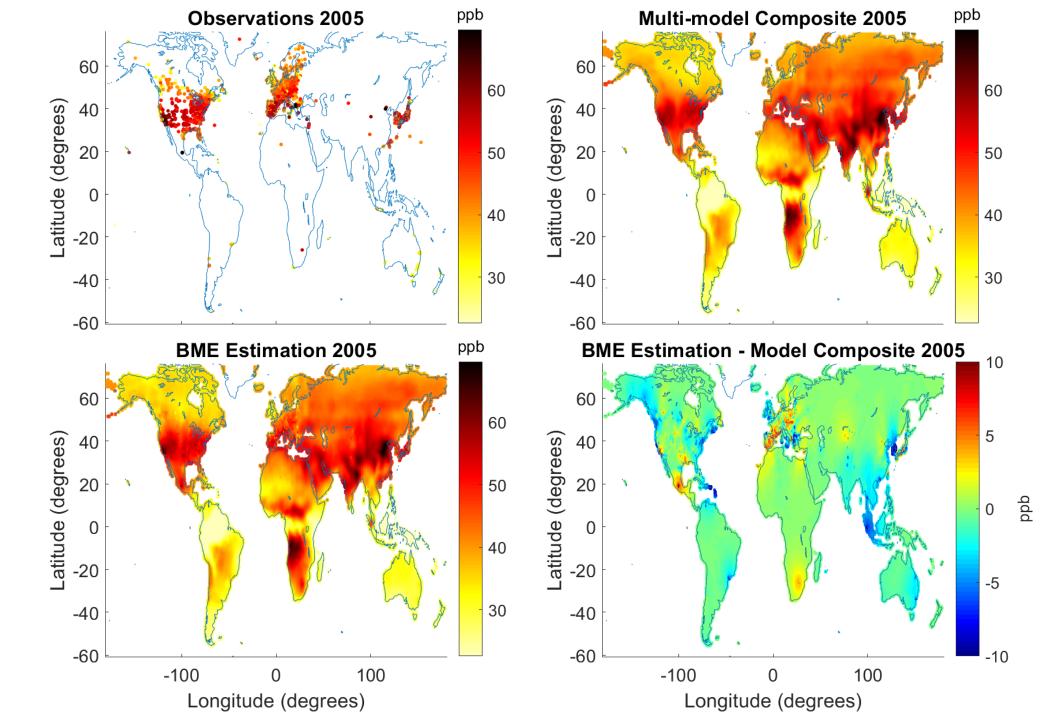
BME Mean

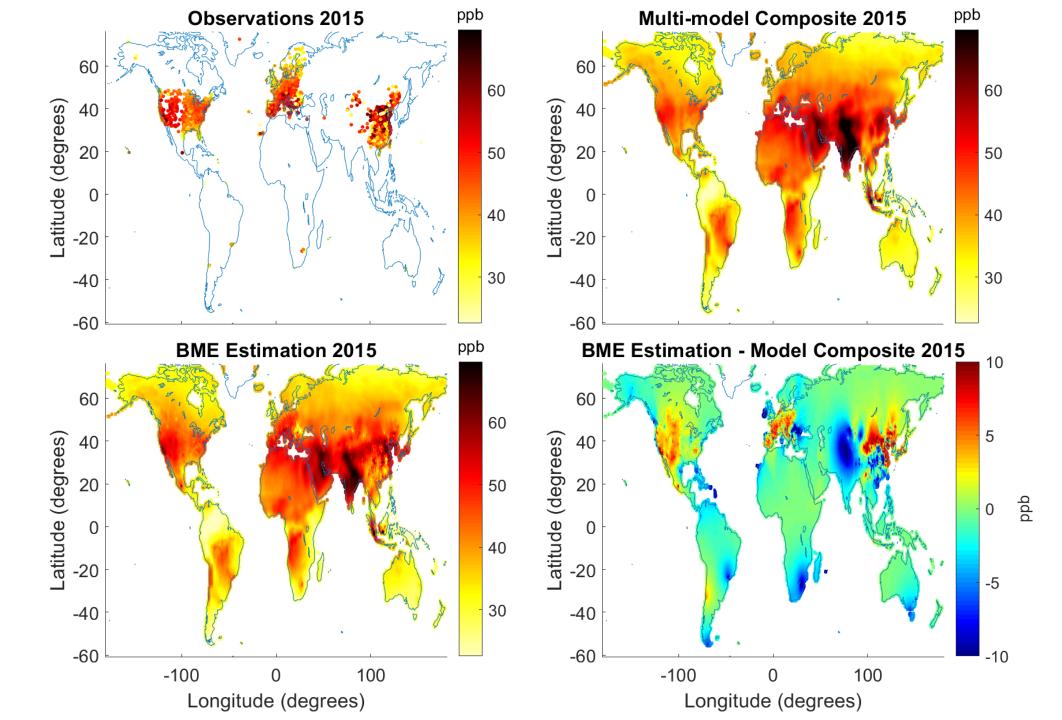
- Matches observation at monitoring stations
- Influence of observation drops off according to space/time covariance
- Away from observations, output is multi-model composite

BME Variance

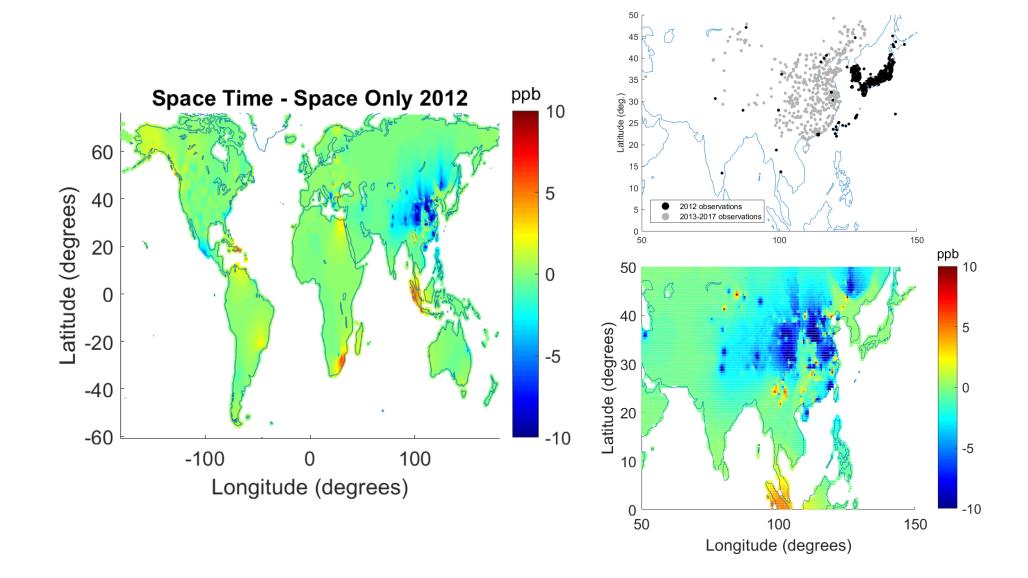
Low near observations





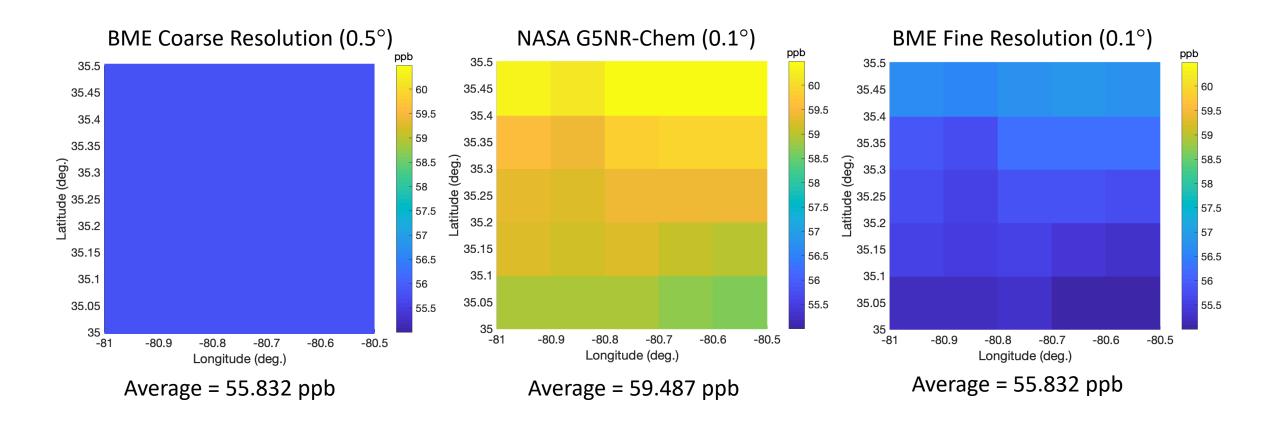


Influence of Observations Across Time



Fine Resolution Addition

NASA G5NR-Chem model: 0.125° July 2013 - June 2014



0.5° grid cell over Charlotte, North Carolina in 2005

Method Evaluation

Scenario	RMSE (ppb)	MSE (ppb²)	ME (ppb)	R ²
Multi-model Mean	13.76	189.23	-11.00	0.28
Multi-model Composite	7.82	61.14	-1.07	0.30
Space Only Corrected	5.61	31.50	0.17	0.63
Space Time Corrected	3.99	15.94	-0.01	0.81
Fine Resolution	5.50	30.21	-0.22	0.64

Key Features

- Yearly ozone distribution (1990-2017)
- Incorporates observations and model output
- Observations influence both space and time
- Fine resolution (0.1 degree) according to fine resolution model

 Annual ozone maps were provided to the GBD team and will be used for GBD 2019

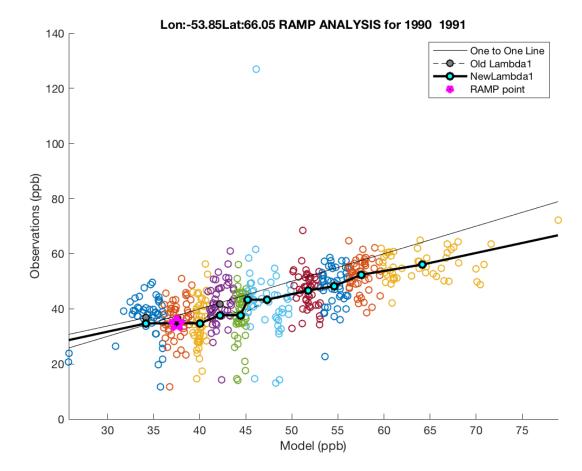
Regional Air Model Performance (RAMP)

Just like CAMP, but each estimation point uses only the nearest n observations to correct the model

Still uses 3 years of data (except first and last year)

Each year the n closest points are used

Restrict slope of correction ≥ 0

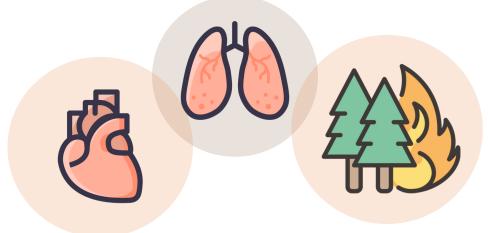


ESTIMATING WILDFIRE SMOKE CONCENTRATIONS DURING THE OCTOBER 2017 CALIFORNIA FIRES THROUGH BME SPACE/TIME DATA FUSION

Stephanie Cleland, Jason West, Marc Serre • UNC-Chapel Hill • HAQAST Webinar 3/5

INTRODUCTION 2017 N. CALIFORNIA FIRES

- Beginning October 8-9, 2017, a series of wildfires in N. California resulted in:
 - Highest PM_{2.5} concentrations ever recorded in Bay Area
 - 8,400 buildings destroyed, 100,000 people displaced, >185 hospitalized, 45 dead
 - ~7.2 million people exposed to unhealthy air
- Wildfires are occurring with increased frequency, intensity, and severity due to climate change
- Smoke exposure increases respiratory and cardiovascular morbidity and mortality



INTRODUCTION ESTIMATING SMOKE CONCENTRATIONS

Three primary datasets are used to characterize population-level exposure to wildfire emissions:

- I. Monitoring Station Observations
- 2. Chemical Transport Models
- 3. Satellite-Based Measurements

INTRODUCTION ESTIMATING SMOKE CONCENTRATIONS

Previous methods for estimating ground-level wildfire smoke concentrations:

- Spatial interpolation of observations
- Chemical transport models
 - Occasionally adjusted by monitoring data, satellite remote sensing data or post-processing statistical techniques
- Geostatistical methods combining observations with modeled and/or satellite-derived concentrations
 - Data fusion, regression modeling, and machine learning methods

Combining multiple $PM_{2.5}$ datasets often leads to improvements in $PM_{2.5}$ estimations during a wildfire

GOALS

Produce accurate estimates of daily average ground-level $PM_{2.5}$ concentrations during the Oct. 2017 fires by:

- Using the Constant Air Quality Model Performance (CAMP) correction method to bias-correct CMAQ (CC-CMAQ) and AOD-estimated PM_{2.5} (CC-Sat) concentrations
- 2. Using the Bayesian Maximum Entropy (BME) framework to fuse monitoring station observations with CC-CMAQ and/or CC-Sat output across space and time
- 3. Evaluating the accuracy of four different BME s/t kriging and data fusion methods to identify the BME methods and combination of $PM_{2.5}$ data sources that best estimate ground-level $PM_{2.5}$ concentrations during the fires

No prior study has evaluated the accuracy of combining all three datasets to estimate wildfire-related $PM_{2.5}$ while correcting for the bias present in satellite and CTM data

METHODS DATA

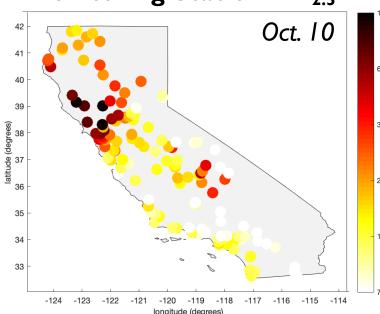
To estimate smoke concentrations during the wildfires, three $PM_{2.5}$ datasets were used:

- I. Surface observations from:
 - 114 EPA FRM/FEM monitoring stations across California, Oct. 1 31 (EPA's air quality database)
 - 49 temporary monitoring stations across California, Oct. I 31 (US Forest Service)
- 2. Estimates from Community Multiscale Air Quality (CMAQ) model in the Central California region at a 4-km resolution from Oct. 3 20 (Bay Area Air Quality Management District)
- 3. Satellite-derived estimates from Moderate Resolution Imaging Spectroradiometer (MODIS)

 Terra Satellite Aerosol Optical Depth (AOD) data, Oct. I 31 (NASA)

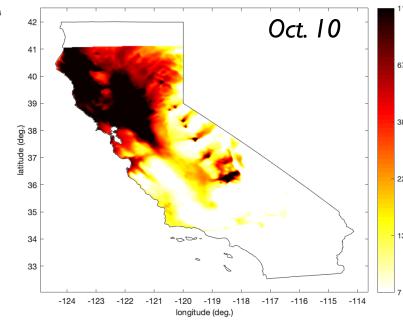
METHODS DATA

Monitoring Station PM_{2.5}



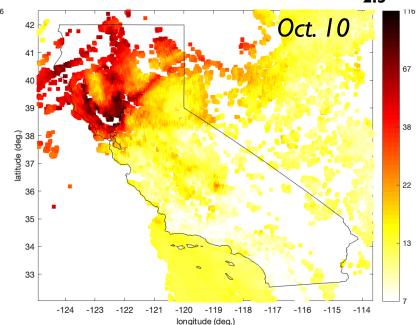
High-quality, accurate PM_{2.5} measurements, readily available

CMAQ Model PM_{2.5}



Space/time coverage, knowledge of atmospheric physics and chemistry and fire emissions

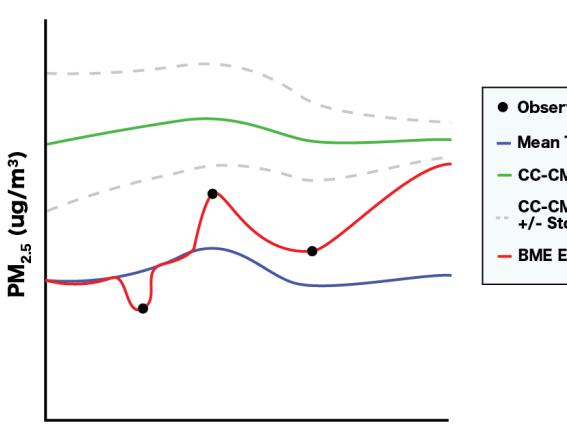
Satellite AOD-Derived PM_{2.5}



Space/time coverage, information on smoke plume location

METHODS BME FRAMEWORK

- Estimates PM_{2.5} at unmonitored locations using modern s/t geostatistics to combine site-specific and general knowledge
 - Site-specific knowledge: PM_{2.5} at a known s/t location
 - General knowledge: mean trend, covariance, variance
- Treats observed PM_{2.5} as hard data
- Treats CC-CMAQ, CC-Sat PM_{2.5} as soft data



- Observation
- Mean Trend
- CC-CMAQ/Sat
- CC-CMAQ/Sat +/- Std. Dev.
- BME Estimation

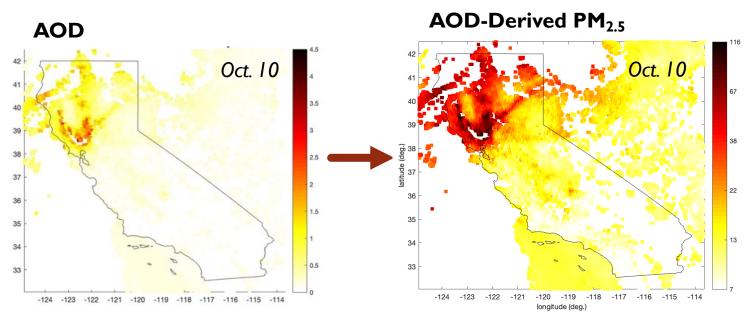
METHODS SOFT DATA CREATION

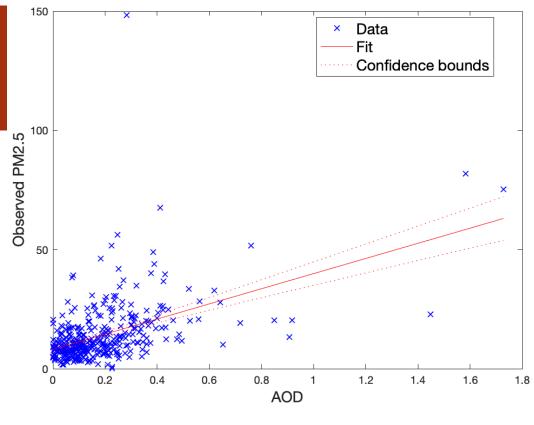
2 steps were used to prepare the modeled and satellite AOD-estimated PM_{2.5} concentrations for BME data fusion:

- I. Conversion of MODIS AOD to $PM_{2.5}$ using a simple linear regression
- 2. CAMP-correct CMAQ (CC-CMAQ) model and AOD-estimated PM_{2.5} (CC-Sat)

METHODS AOD→PM_{2.5} CONVERSION

- I. Conversion of MODIS AOD to $PM_{2.5}$ using a simple linear regression
 - MODIS AOD paired with collocated daily avg. PM_{2.5} observations
 - Simple linear regression trained on 75% of paired data to obtain formula → 25% of data used to validate



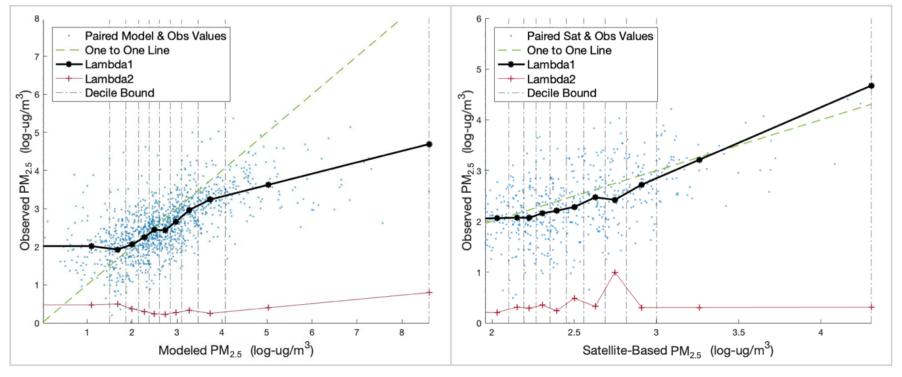


PM_{2.5} Estimation = Slope * AOD + Intercept

ITRODUCTION • GOALS • **METHODS** • RESULT

METHODS CAMP

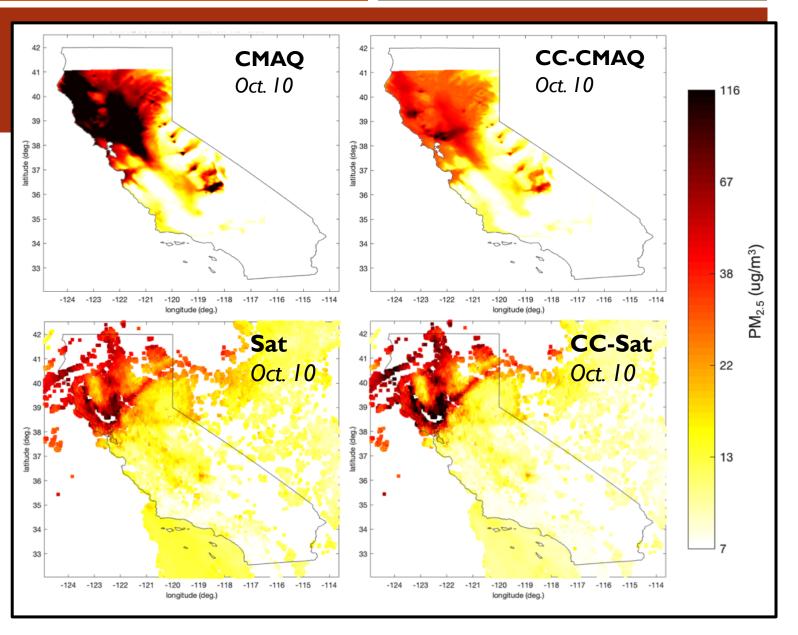
- 2. CAMP-correct CMAQ (CC-CMAQ) model and AOD-derived PM_{2.5} (CC-Sat)
 - Model the mean (λ_1) and variance (λ_2) of observed value as a function of estimated value, accounting for the non-linear and non-homoscedastic relationship between estimated and observed PM_{2.5} data



INTRODUCTION • GOALS • **METHODS** • RESULT

METHODS CAMP

	MSE (log-(µg/m³)²)	R ² (log-space)
CMAQ	0.703	0.410
CC-CMAQ	0.331	0.452
Sat	0.406	0.237
CC-Sat	0.389	0.229



METHODS EVALUATING 4 APPROACHES

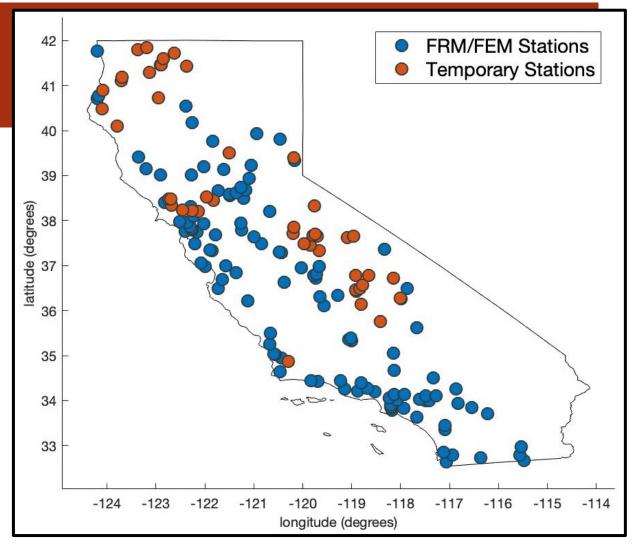
Using the BME Framework, 4 mapping methods were evaluated, using Mean Squared Error (MSE) and R² values from cross-validations:

- I. Space/time BME kriging on $log-PM_{2.5}$ observations
 - With and without temporary station data
- 2. BME data fusion of CC-CMAQ & log-PM_{2.5} observations
- 3. BME data fusion of CC-Sat & log-PM_{2.5} observations
- 4. BME data fusion of CC-CMAQ, CC-Sat, & log-PM_{2.5} observations

RESULTS TEMPORARY STATIONS

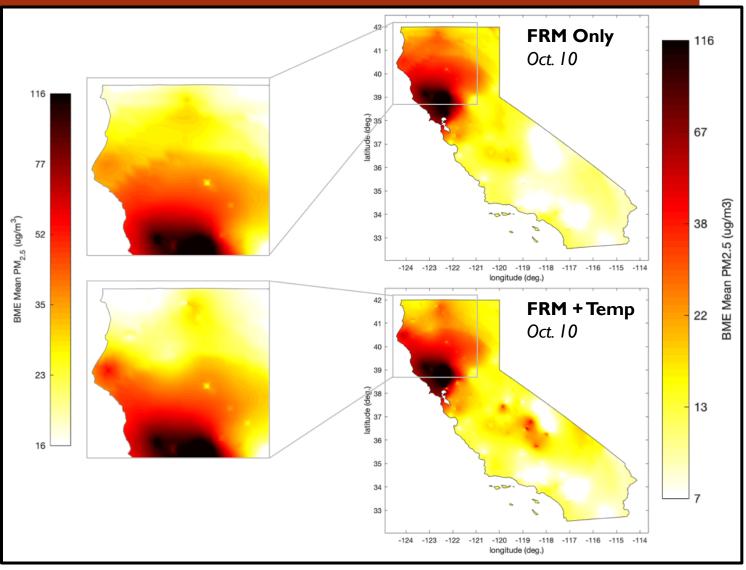
- Use of temporary station data, while not FRM/FEM, improves accuracy of PM_{2.5} estimates by increasing the coverage of surface observations
 - 114 stations → 163 stations
 - 2670 s/t observations → 3621 s/t observations

Method	MSE (log-(µg/m³)²)	R ² (log-space)
S/T BME Kriging on Obs FRM Only	0.249	0.546
S/T BME Kriging on Obs FRM + TEMP	0.139	0.740



TEMPORARY STATIONS

- Use of temporary station data, while not FRM/FEM, improves accuracy of PM_{2.5} estimates by increasing the coverage of surface observations
 - 114 stations \rightarrow 163 stations
 - 2670 s/t observations → 3621 s/t observations
- Use of temporary station data also refines smoke plume shape in Northern California



COMPARISON OF 4 BME METHODS

 CAMP improves the accuracy of the CMAQ and satellitederived products

Method	MSE (log-(μg/m³)²)	R ² (log-space)
Satellite-Derived PM _{2.5} (Sat)	0.406	0.237
CMAQ Model	0.703	0.410
CAMP-Corrected (CC)-Sat	0.389	0.229
CC-CMAQ	0.331	0.452
I. BME S/T Kriging on Obs	0.139	0.740
2. BME Fusion, Obs + CC-CMAQ	0.144	0.730
3. BME Fusion, Obs + CC-Sat	0.162	0.699
4. BME Fusion, Obs + CC-CMAQ + CC-Sat	0.159	0.708

COMPARISON OF 4 BME METHODS

- CAMP improves the accuracy of the CMAQ and satellitederived products
- All BME s/t kriging and data fusion methods performed better than either of the standalone CMAQ and satellitederived products

Method	MSE (log-(μg/m³)²)	R ² (log-space)
Satellite-Derived PM _{2.5} (Sat)	0.406	0.237
CMAQ Model	0.703	0.410
CAMP-Corrected (CC)-Sat	0.389	0.229
CC-CMAQ	0.331	0.452
I. BME S/T Kriging on Obs	0.139	0.740
2. BME Fusion, Obs + CC-CMAQ	0.144	0.730
3. BME Fusion, Obs + CC-Sat	0.162	0.699
4. BME Fusion, Obs + CC-CMAQ + CC-Sat	0.159	0.708

COMPARISON OF 4 BME METHODS

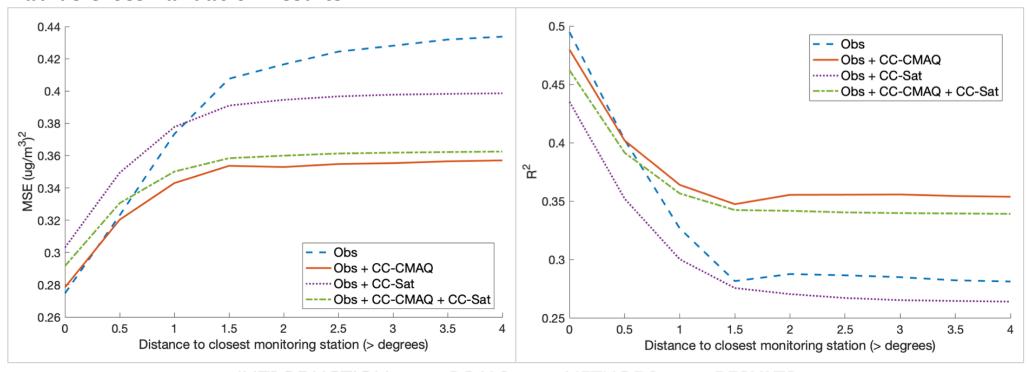
- CAMP improves the accuracy of the CMAQ and satellitederived products
- All BME s/t kriging and data fusion methods performed better than either of the standalone CMAQ and satellitederived products
- BME s/t kriging on observations produces most accurate estimates at monitoring station locations

Method	MSE (log-(μg/m³)²)	R ² (log-space)
Satellite-Derived PM _{2.5} (Sat)	0.406	0.237
CMAQ Model	0.703	0.410
CAMP-Corrected (CC)-Sat	0.389	0.229
CC-CMAQ	0.331	0.452
I. BME S/T Kriging on Obs	0.139	0.740
2. BME Fusion, Obs + CC-CMAQ	0.144	0.730
3. BME Fusion, Obs + CC-Sat	0.162	0.699
4. BME Fusion, Obs + CC-CMAQ + CC-Sat	0.159	0.708

COMPARISON OF 4 BME METHODS

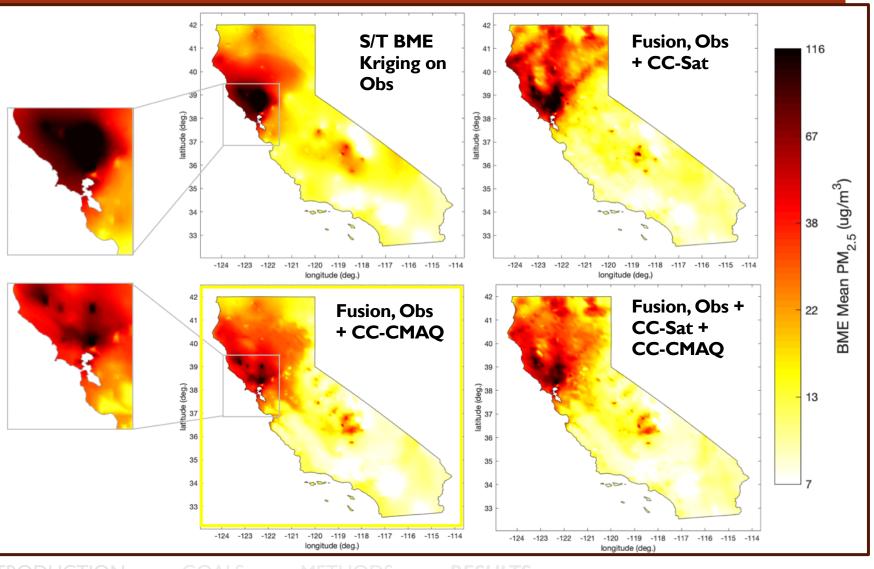
- Fusing observations with CC-CMAQ provides best overall PM_{2.5} estimate
 - Better estimates $PM_{2.5}$ if $> \sim 35$ miles from a station

Radius cross-validation results



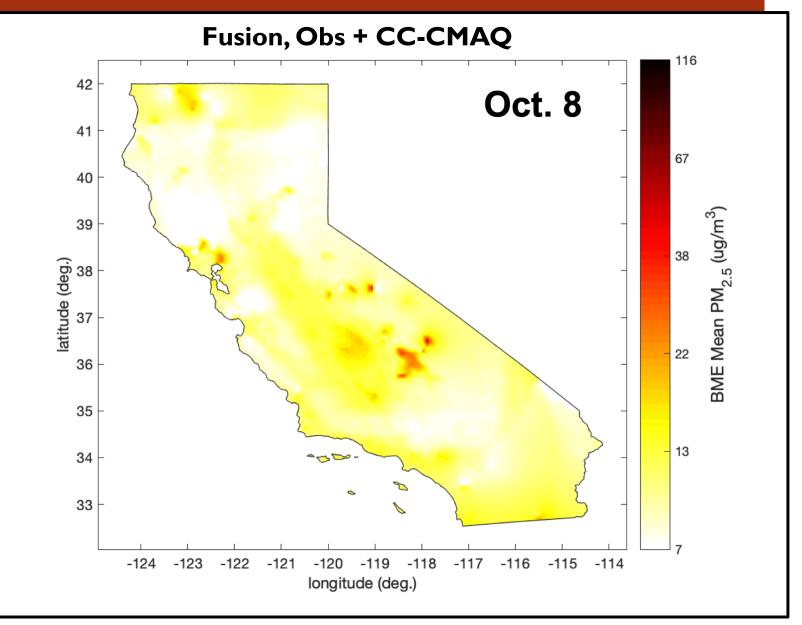
RESULTS COMPARISON

- Fusing observations with CC-CMAQ provides best overall PM_{2.5} estimate
 - Adds knowledge of atmospheric chemistry and physics and fire emissions



RESULTS PM_{2.5} MAPS

- Fires had clear impact on air quality, with daily avg. PM_{2.5} > 190 μg/m³
- EPA identifies 24-hour average PM_{2.5} concentrations > 150.5 μg/m³ as very unhealthy
 - During the fires, an estimated
 60,371 individuals were exposed to daily avg. PM_{2.5} > 150.5 μg/m³
 - On Oct. 13, an estimated 57,013 individuals were exposed to daily avg. PM_{2.5} > 150.5 μg/m³



AIR QUALITY MAPPING RESULTS

- CAMP improves the accuracy of the CMAQ and satellite-derived products
- Use of temporary station data improves accuracy of PM_{2.5} estimates and refines smoke plume shape
- All four BME s/t kriging and data fusion methods performed better than either of the standalone CMAQ and satellite-derived products
- BME s/t kriging on observations produces most accurate estimates at monitoring station locations
- Fusing observations with CC-CMAQ provides best overall PM_{2.5} estimate, especially in smoke-impacted, stationscarce regions
- Fires had clear impact on air quality, reaching PM_{2.5} levels dangerous to human health

BME Data Fusion

- Our datasets are available for others to use upon request, for health impact assessment and epidemiology.
- Fusing data from multiple sources usually performs better than single datasets.
- Flexible methods that are adaptable to a wide range of applications and input data.

ACKNOWLEDGEMENTS

FUNDING SOURCES

- NASA HAQAST
- NIOSH T420H008673

THANKS TO

- TOAR organizers and those who provided ozone data
- Multiple global modeling teams including at CCMI and NASA

HAQAST FIRESTIGER TEAM

- Susan O'Neill & Minghui Diao for leading
- BAAQMD for CMAQ model runs
- USFS for temporary station data
- Rest of team for collaboration & support

HAQAST INDICATORS TIGER TEAM

Susan Anenberg for leading

DEPARTMENT OF ENVIRONMENTAL SCIENCES AND ENGINEERING

QUESTIONS?

REFERENCES

- Al-Hamdan, M. Z., Crosson, W. L., Limaye, A. S., Rickman, D. L., Quattrochi, D. A., Estes, M. G., ... Niskar, A. S. (2009). Methods for characterizing fine particulate matter using ground observations and remotely sensed data: Potential use for environmental public health surveillance. Journal of the Air and Waste Management Association, 59(7), 865–881. https://doi.org/10.3155/1047-3289.59.7.865
- Associated Press. (2017). Hospitals say at least 185 treated for injuries. Retrieved from https://www.wilx.com/
- Boegelsack, N., Withey, J., O'sullivan, G., & Mcmartin, D. (2018). A Critical Examination of the Relationship between Wildfires and Climate Change with Consideration of the Human Impact. Journal of Environmental Protection, 9, 461–467.
- California Department of Forestry & Fire Protection. (2019). Stats & Events. Retrieved from https://www.fire.ca.gov/stats-events/
- Christakos, G. et al. (2000). BME analysis of spatiotemporal particulate matter distributions in North Carolina. Atmospheric Environment, 34(20), 3393–3406.
- Delfino, R. J., Brummel, S., Wu, J., Stern, H., Ostro, B., Lipsett, M., ... Gillen, D. L. (2009). The relationship of respiratory and cardiovascular hospital admissions to the southern California wildfires of 2003. Occupational and Environmental Medicine, 66(3), 189–197. https://doi.org/10.1136/oem.2008.041376
- Durán, S., Elliott, C., Rideout, K., Flannigan, M., & Reisen, F. (2014). Evidence Review: Wildfire smoke and public health risk. Environmental Health Services (Vol. 655). Retrieved from www.bccdc.ca
- Koman, P. D., Billmire, M., Baker, K. R., de Majo, R., Anderson, F. J., Hoshiko, S., ... French, N. H. F. (2019). Mapping modeled exposure of wildland fire smoke for human health studies in California. Atmosphere, 10(6). https://doi.org/10.3390/atmos10060308
- Lee, S.-J. et al. (2012). Comparison of geostatistical interpolation and remote sensing techniques for estimating long-term exposure to ambient PM2.5 concentrations across the continental United States. Environmental Health Perspectives, 120(12), 1727–1732.
- NASA. (2019). Applied Remote Sensing Training | ARSET. Retrieved from https://arset.gsfc.nasa.gov/
- Reid, C. E., Brauer, M., Johnston, F. H., Jerrett, M., Balmes, J. R., & Elliott, C. T. (2016, September 1). Critical review of health impacts of wildfire smoke exposure. *Environmental Health Perspectives*. Public Health Services, US Dept of Health and Human Services. Zanobetti, A. et al. (2009). Fine particulate air pollution and its components in association with cause-specific emergency admissions. *Environmental Health*, 8(1), 58.
- Reyes, J. M. et al. (2017). Regionalized PM2.5 Community Multiscale Air Quality model performance evaluation across a continuous spatiotemporal domain. Atmospheric Environment, 148, 258–265.
- Willingham, A., & Garrett, M. (2019). Wildfires in California: The startling stats CNN. Retrieved November 2, 2019, from https://www.cnn.com/2019/10/29/us/wildfires-california-by-the-numbers-wxc-trnd/index.html

APPENDIX

INTRODUCTION WILDFIRES & CLIMATE CHANGE

- Wildfires are occurring with increased frequency, intensity, and severity due to climate change, with larger burn areas and longer season
 - October 2018 wildfires (Camp Fire) were deadliest and most destructive wildfire season ever recorded in California
 - Recent Kincade Fire in N. California → 77,000+ acres burned, 180,000 people displaced, I million without power

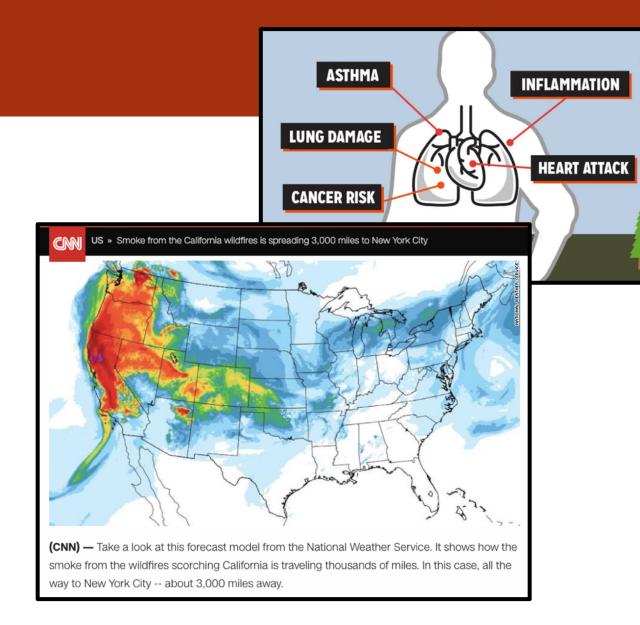
Wildfires are making California's deadly air pollution even worse

Poor air quality can harm millions and take years off lifespans. Dust and wildfire smoke are major contributors.

By Umair Irfan | Oct 28, 2019, 6:30pm EDT

INTRODUCTION IMPACT OF WILDFIRES

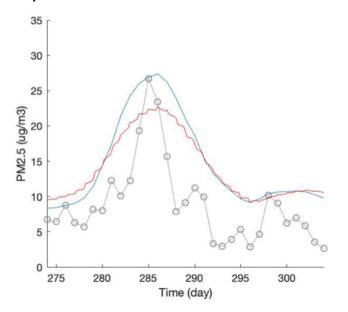
- Increased respiratory and cardiovascular morbidity and mortality
 - Exacerbation of COPD and asthma
 - Increased risk of respiratory infection and CHF
 - Increased hospital and ED admissions
- PM_{2.5} from wildfire smoke remains in the air for extended periods and can be transported over large distances
- Need a framework to better understand the impacts of these fires

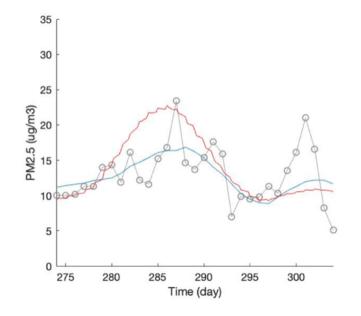


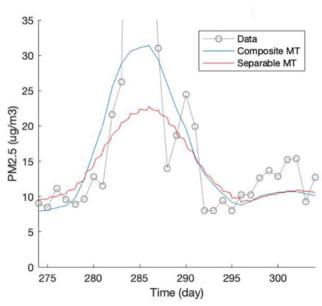
METHODS MEAN TREND

An informed composite mean trend (MT) in space and time is removed from the data to characterize systematic structures and trends over space and time

- Informed Separable s/t MT Assumes that the MT of PM_{2.5} is a combination of a purely spatial and temporal MT
- Informed s/t Composite MT—Assumes that each s/t location has its own unique MT of PM_{2.5} observations across space & time







METHODS COVARIANCE

$$c_{x}(r,t) = c_{01} \exp\left(\frac{-3r}{a_{r1}}\right) \exp\left(\frac{-3t}{a_{t1}}\right) +$$

$$c_{02} \exp\left(\frac{-3r}{a_{r2}}\right) \exp\left(\frac{-3t}{a_{t2}}\right) +$$

$$c_{03} \exp\left(\frac{-3r}{a_{r3}}\right) \exp\left(\frac{-3t}{a_{t3}}\right)$$

Human Activities

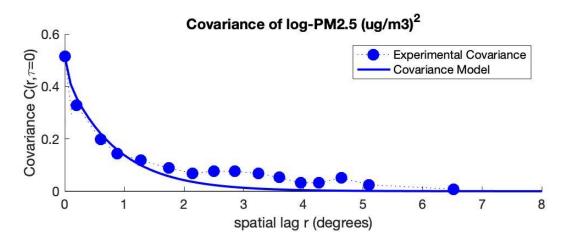
 $a_{r1} = 0.15$ degrees, $a_{t1} = 16,425$ days, $c_{01} = 0.0636$ (log-ug/m³)²

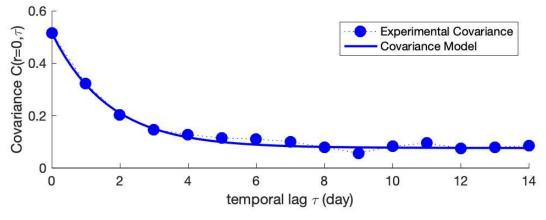
Weather-Related

 $a_{r2} = 4$ degrees, $a_{t2} = 365$ days, $c_{02} = 0.0142$ (log-ug/m³)²

Wildfire-Related

 $a_{r3} = 2.5$ degrees, $a_{t3} = 5$ days, $c_{03} = 0.441$ (log-ug/m³)²





METHODS BME FRAMEWORK

Use of BME for mapping & assessing health risk of PM:

- Estimates of mortality risk differed among exposure models \rightarrow using the BME framework to map PM_{2.5} resulted in better Cox proportional hazard model fit and larger effect size (Jerrett et al, 2017)
- Incorporating land-use regression (LUR) into BME framework to map PM_{2.5} across the United States resulted in a 22% reduction in MSE over simple kriging (Reyes & Serre, 2014)
- Using a moving-window BME approach to map $PM_{2.5}$ across the United States led to a significant reduction in estimation error \rightarrow recommended for epidemiological studies investigating the effect of long-term exposure to $PM_{2.5}$ (Akita, Chen, & Serre, 2012)
- BME led to improved, more meaningful estimates of the annual PM_{10} in the state of California, compared to traditional techniques of spatial kriging \rightarrow the advantages of BME are particularly valuable when assessing health risks (Christakos et al, 2001)

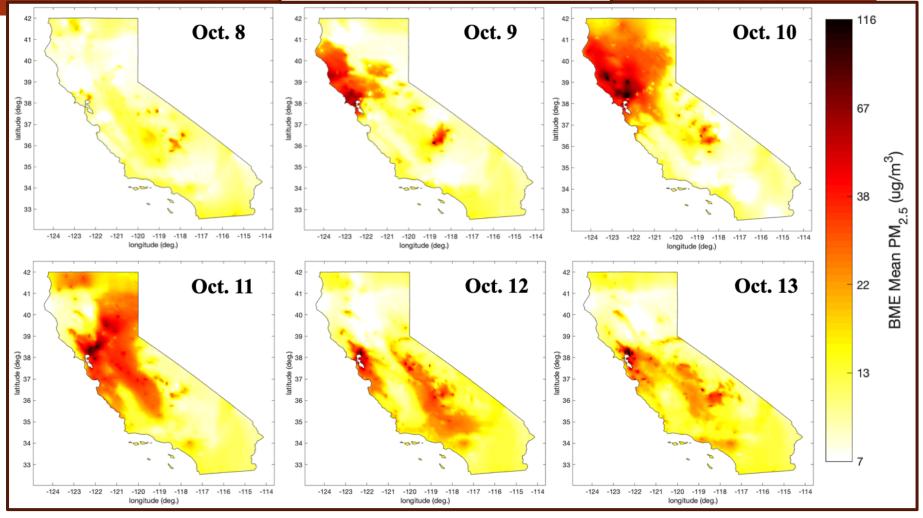
METHODS BME FRAMEWORK - CITATIONS

- Akita, Y., Chen, J. C., & Serre, M. L. (2012). The moving-window Bayesian maximum entropy framework: Estimation of PM 2.5 yearly average concentration across the contiguous United States. *Journal of Exposure Science and Environmental Epidemiology*, 22(5), 496–501. https://doi.org/10.1038/jes.2012.57
- Christakos, G., Serre, M. L., & Kovitz, J. L. (2001). BME representation of particulate matter distributions in the state of California on the basis of uncertain measurements. *Journal of Geophysical Research: Atmospheres*, 106(D9), 9717–9731. https://doi.org/10.1029/2000JD900780
- Jerrett, M., Turner, M. C., Beckerman, B. S., Pope, C.A., van Donkelaar, A., Martin, R.V., ... Burnett, R.T. (2017). Comparing the health effects of ambient particulate matter estimated using ground-based versus remote sensing exposure estimates. *Environmental Health Perspectives*, 125(4), 552–559. https://doi.org/10.1289/EHP575
- Reyes, J. M., & Serre, M. L. (2014). An LUR/BME framework to estimate PM2.5 explained by on road mobile and stationary sources. *Environmental Science and Technology*, 48(3), 1736–1744. https://doi.org/10.1021/es4040528

RESULTS PM_{2.5} MAPS

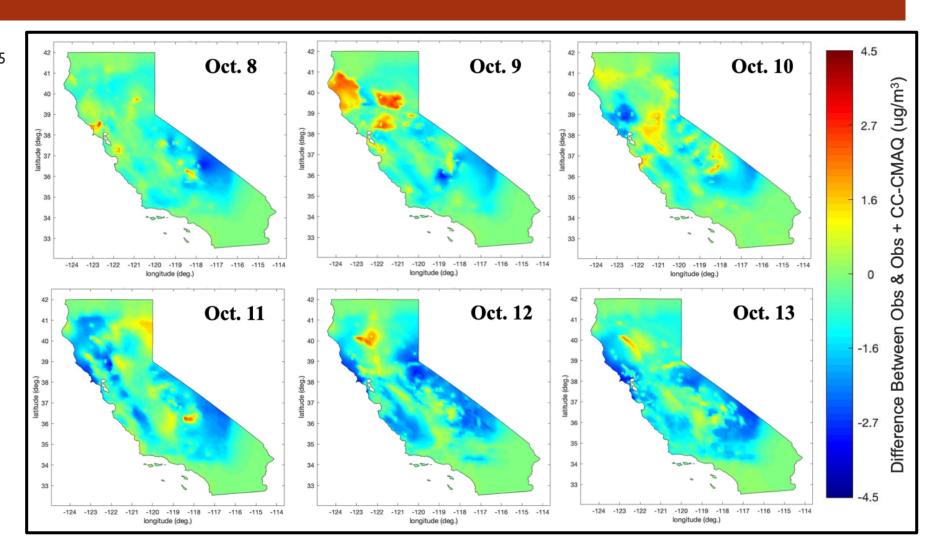
- Fires had clear impact on air quality, reaching PM_{2.5} levels dangerous to human health → Daily avg. PM_{2.5} > 150.5 μg/m³
- EPA identifies 24-hour average PM_{2.5} concentrations > 150.5 µg/m³ as very unhealthy
 - On Oct. 13, an estimated
 57,013 individuals were exposed to daily avg.
 PM_{2.5} > 150.5 μg/m³

Fusion, Obs + CC-CMAQ



COMPARISON BETWEEN KRIGING & FUSION

Difference between PM_{2.5}
 estimations produced by
 BME s/t kriging on
 observations and BME
 data fusion of
 observations and CC CMAQ



RESULTS BME VARIANCE

