Sneeze and Wheeze in a Low Earth Orbit:

Forecasting Pollen from Space

Jeremy Hess, MD, MPH
Associate Professor
Emergency Medicine, Environmental \& Occupational Health Sciences, Global Health Director, UW Center for Health and the Global Environment (CHanGE)

Fiona Lo, MS; Cecilia Bitz, PhD; UW Atmospheric Science

Disclosures

> Research funding from the National Institutes of Health (NIH), the National Aeronautics and Space Administration (NASA), the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA), the Wellcome Trust, the UW Global Innovation Fund, and the Ren Che Foundation
> Sponsored travel from NOAA, NSF, Sun-Yat Sen University, and the University College London
$>$ Research consultation for the European Union

Acknowledgements

Funding from NASA: 5-HAQST15-0025

National Allergy Bureau pollen data providers and their clinics:

Alan Goldsobel, MD, FAAAAI, \& James Wolfe, MD, FAAAAI, Allergy and Asthma Associates of Northern California, San Jose, CA
Robert Nathan, MD, FAAAAI, \& Daniel Soteres, MD, MPH, FAAAAI, Asthma and Allergy Associates, PC, Colorado Springs, CO
Christopher Randolf, MD, FAAAAI, Waterbury, CT
Richard Henry, MD, Asthma \& Allergy of Idaho, Twin Falls, ID
Joseph Leija, MD, FAAAAI, Melrose Park, IL
James Sublett, MD, FAAAAI, Family Allergy \& Asthma, Louisville, KY
Jonathon Matz, MD, FAAAAI, \& David Golden, MD, FAAAAI, Baltimore, MD
Harold Kaiser, MD, FAAAAI, Clinical Research Institute, Minneapolis, MN
Jay Portnoy, MD, FAAAAI, Children's Mercy Hospital, Kansas City, MO
Rhizza Adams, Springfield-Greene County Health Department, Springfield, MO
Wayne Wilhelm, St. Louis County Health Department, Berkeley, MO Linda Ford, MD, FAAAAI, The Asthma and Allergy Center, PC, Bellevue, NE Donald Pulver, MD, FAAAAI, Allergy, Asthma \& Immunology of Rochester, Rochester, NY Andy Roth, RAPCA, Dayton, OH
Warren Filley, MD, FAAAAI, OK Allergy Asthma Clinic, Inc., Oklahoma City, OK Martha Tarpay, MD, Allergy \& Asthma Center, Oklahoma City, OK

Amy Darter, MD, Oklahoma Institute of Allergy \& Asthma, Oklahoma City, OK

James Anderson, MLT, OSHTECH, London, ONT
Kraig Jacobson, MD, FAAAAI, Allergy \& Asthma Research Group, Eugene, OR Philip Gallagher, MD, FAAAAI, Allergy \& Asthma Associates of Northeastern Pennsylvania, Erie, PA

Michael Nickels, MD, PhD, Allergy and Asthma Consultants, Inc., York, PA Neil Kao, MD, FAAAAI, Allergic Disease and Asthma Center, Greenville, SC Sheila Amar, MD, FAAAAI, FACAAI, Allergy \& Asthma Center of Georgetown, Austin, TX David Weldon, MD, FAAAAI, FACAAI, Scott \& White Clinic, College Station, TX Tony Huynh, City of Houston, Houston, TX

Robert Gomez, Wiford Hall Ambulatory Surgical Center, San Antonio, TX Paul Ratner, MD, MBA, FAAAAI, Sylvana Research Associates, San Antonio, TX Pramila K. Daftary, MD, FAAAAI, Allergy \& Asthma Care of Waco, Waco, TX Duane Harris, MD, FAAAAI, Intermountain Allergy \& Asthma Clinic, Draper, UT Frank Virant, MD, FAAAAI, Northwest Asthma \& Allergy Center, Seattle, WA Robert Bush, MD, FAAAAI, University of Wisconsin Medical School, Madison, WI Susan E. Kosisky, MHA, US Army Garrison-Forest Glen, Silver Spring, MD

Overview

Allergy Etiology \& Epidemiology

Developing Forecasts

ETIOLOGY \& EPIDEMIOLOGY

Image available here

Disease origins and distribution

Pollen Allergy Epidemiology

> Substantial disease burden globally

- Allergic rhinitis (AR) prevalence estimated 10-30\%
- Allergic asthma estimated at 5-10\%
$>$ In US, prevalence estimated at 13% in children and 14% in adults (Meltzer, 2009)
- AR responsible for 3.5 m lost work days and 2 m lost schooldays per year (Nathan 2007)
- Decreased health-related quality of life by 25% (Avarro et al. 2007)
- Estimated \$2-5b costs in US in 2003 (Reed et al. 2004); inflation adjusted \$4-7b in \$US2018

Allergic Disease

> Allergies immune mediated, driven by immune memory (IgE antibodies)
> Multiple exposures drive allergic disease development and flares
> Generally not life threatening but makes people miserable
> Range of therapies

- Exposure avoidance
- Symptom reduction
- Immune modulation

Sensitization by Age and Exposure

- at least one weed
- at least one grass
- at least one tree

6-7-year-old children	Pollen	Positive percent of 56 children
	Russian thistle	68%
Most common weeds	Pigweed	61%
	Sagebrush	49%
	Saltgrass	58%
Most common grasses	Timothy	48%
	Bermuda	45%
	Johnson	45%
	Willow	39%
Most common trees	Sweet gum	32%
	Mulberry	36%

Prevalent allergens in the Great Basin

Pollen Types and Seasons

Johns Hopkins University Division of Allergy and Clinical Immunology

Nowak-Wegrzyn A. Up To Date, 2017

Pollen and Health - Methods

> Retrospective analysis of associations between tree, weed, and grass pollen and several morbidity measures in the continental US, controlling for particulate air pollution, ozone, and influenza-like illness
$>$ Set season start at cumulative count of 50 grains $/ \mathrm{m}^{3}$ unless mean seasonal total count $\leq 2,000$ grains, then 2.5%
> Metropolitan Statistical Area (MSA) linked with NAB stations, county $\mathrm{PM}_{2.5}$ and O_{3}, weekly CDC ILI prevalence
$>$ GEEs used to estimate daily counts

RR Prescription Med Refill High Pollen Days

Location
Overall (random effect)
Atlanta, GA
Austin, TX
Baltimore, MD
Chicago, IL
CollegeStation, TX
ColoradoSprings, CO
Dayton, OH
Erie, PA
Eugene, OR
Greenville, SC
Houston, TX
KansasCity, MO
Louisville, KY
Madison, WI
Minneapolis, MN
OklahomaCity, OK
Omaha, NE
Rochester, NY
SaintLouis, MO
Salt Lake City, UT
SanAntonio, TX
SanJose, CA
Seattle, WA
Springfield, MO
Tulsa, OK
Waco, TX
Washington, DC
Waterbury, CT
York, PA

Tree pollen
Grass pollen

Weed pollen

Saha et al. in preparation

RR Prescription Med Refill High Tree Pollen Days
 Location

Overall (random effect)
Atlanta, GA
Austin, TX
Baltimore, MD
Chicago, IL
CollegeStation, TX
ColoradoSprings, CO
Dayton, OH
Erie, PA Eugene, OR
Greenville, SC
Houston, TX KansasCity, MO

Louisville, KY
Madison, WI
Minneapolis, MN OklahomaCity, OK

Omaha, NE Rochester, NY SaintLouis, MO
Salt Lake City, UT
SanAntonio, TX
SanJose, CA
Seattle, WA
Springfield, MO
Tulsa, OK
Waco, TX
Washington, DC
Waterbury, CT
York, PA

An Increasingly Common Picture

Warming and Plant Hardiness

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

Warming and Allergic Plant Suitability $\mathbf{~ T}$

CO_{2} and Warming Double Whammy

US EPA

MORE CO $2=$ MORE POLLEN
25
Pollen Production
20

Climate Central

Sensitization and Pollen Levels

Annual weed pollen counts from 1997 to 2009 in Seoul. Weed pollen included ragweed, Japanese hop and mugwort.

Annual sensitization rates to weed pollen allergens according to age. Weed pollen included ragweed, Japanese hop and mugwort.

Take-Home Findings

$>$ Widespread, significant disease burden
$>$ Increasing with socioeconomic development
$>$ Pollen exposure is a strong driver of incidence
$>$ Increases in temperature and CO_{2} will very likely increase allergic disease burden

MANAGEMENT

Image available here

What to do, and not do, for pollen allergies

Allergic Disease Management

Medication

Exposure Reduction

Immune Therapy

Symptoms and Pollen Counts

Patients with tree pollen allergy $\rightarrow-$ Tree pollen counts \rightarrow Minimum temperature

Kim et al. 2011

Pollen Types and Seasons

Johns Hopkins University Division of Allergy and Clinical Immunology

Nowak-Wegrzyn A. Up To Date, 2017

Pollen

 20% of the country in medium >
 \title{

National
 \title{ \section*{National Allergy Map}

 Allergy Map}} status
Click map to zoom in and explore regions, states and cities

it'll help your body keep burning calories

Allergy Outlook

NAB Data

Lo et al. 2019

Pollen Calendar NAB Data

Total Pollen Count 2003-2016
by latitude

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH
Lo et al., 2019
CHanGE
Center for health and the Clobal Environment
UNIVESTITY of washingoion I school of pubic heath

Allergenic Trees

Morus (Mulberry)

Cupressus (Cypress)

Quercus (Oak)
Lo et al., 2019

Urticacae

Plantago

Ambrosia

Chenopodiaceae/Amaranthacae

Lo et al., 2019

Lo et al., 2019

Site-specific Exposures - Seattle

Start Date, Season Duration, Latitude

FORECASTING

Image available here

Building better forecasts

Forecast Model Goals

> Develop model(s) that:

- Work for all three major types (trees, weeds, grasses) and for specific taxa
- Work across wide range of geographies
- Capture start date a week in advance
- Capture high counts several days in advance
- Capture season end for ragweed
> Accurately support the decisions patients, clinicians, and others need to make

Factors Associated with Pollen in the Air

- Temperature
- Humidity
- Solar radiation
- Wind speed

Seattle, 19 March 2019
75F, very dry, high winds
UNIVERSITY of WASHINGTON Courtesy of Jeff Baars, UW Atmospheric Science

Factors Associated with Pollen Overall

1. Meteorology

2. Vegetation
3. Geography
4. Pollen

Model Development

> Machine learning random forest decision tree model
$>$ Ensemble of decision trees to build predictive model
> Computationally efficient, captures nonlinear relationships
$>$ Example: Predicting rainfall for a specific season

NAB Data

Lo et al. 2019

Atlanta - Quercus - Oak

Atlanta 2017: Quercus

Kansas City - Ambrosia - Ragweed

KansasCity 2017: Ambrosia

Flower Mound - Cupressaceae - Cedar

FlowerMound 2016-2017: Cupressaceae

Eugene - Gramineae / Poaceae - Grass

Eugene 2017: Gramineae / Poaceae

Role of Regional Data

UNIVERSITY of WASHINGTON
SCHOOL OF PUBLIC HEALTH

CHanGE

Accuracy - Atlanta - 1, 2, and 3 days

Mean average error Atlanta pollen season start date 14 day forecast: 4.7 days

Daily Oak Pollen Concentration

Next Steps

$>$ Refine models for each taxon
> Develop regional models

- Produce hindcast gridded estimates
- Produce climate change projections
$>$ Link with health damage functions
$>$ Incorporate weather forecast data
$>$ Bring forecast products online

Thank You!

HAQAST

