Preliminary comparison of the environmental justice impacts of different high spatial resolution PM_{2.5} datasets

Therese (Tess) S. Carter, Susan Anenberg, and Gaige Kerr

EJ mapping tools use different PM2.5 data sources

- EPAEJ Screen uses CMAQ fusion
- CDC Environmental Justice Index combines monitor and model data
- CalEnviroScreen combines PM_{2.5} concentrations from monitors along with satellite observations
- Washington's tool based on CalEnviroScreen; several other states have at least preliminary tools

Recent available datasets

	Available years	Spatial resolution	Approach
CMAQ fusion	2002 - 2019	I2 km	Bayesian downscaler to fuse ground monitors & model
Van Donkelaar et al. 2021 (VD)	1998 - 2020	0.01 and 0.1 degrees	Satellite + ground obs & CTM
Amini et al. in review	2000 - 2019	Urban at 50 m & non-urban at 1km	Obs (ground, satellite, + reanalysis) & machine learning

Annual mean 2019 PM_{2.5} concentrations at census tracts

How do recent high resolution datasets compare?

References

Amini, H. et al. Hyperlocal super-learned PM2.5 components across the contiguous US. https://www.researchsquare.com/article/rs-1745433/v1 (2022) doi:10.21203/rs.3.rs-1745433/v1.

US EPA, O. RSIG-Related Downloadable Data Files. https://www.epa.gov/hesc/rsig-relateddownloadable-data-files (2015).

van Donkelaar, A. et al. Monthly Global Estimates of Fine Particulate Matter and Their Uncertainty. Environ. Sci. Technol. 55, 15287–15300 (2021).

Relative PM_{2.5} exposure estimates generally agree

Higher exposure for Hispanics

Higher incomes in West \rightarrow higher exposure

PM_{2.5} disparities

Disparities are calculated as the ratio of population-weighted PM_{2.5} for each population subgroup to the population-weighted overall average for different aggregations (i.e., all, urban, or rural tracts) and regions.

Conclusions & next steps

- Datasets generally agree on relative PM_{2.5} exposure differences by group with some variation (e.g., Amini shows larger disparities than VD in many regions across variables)
- Absolute magnitude exposure differs across datasets with Amini and CMAQ often larger
- Urban and rural differences provide insights on other EJ variables
- Amini and VD resolve intraurban differences particularly in the west, unlike CMAQ
- Investigate relative versus absolute EJ exposure differences
- Differences among datasets may be due to source differences, such as differences in underlying smoke emissions; more work needed to confirm
- Consider comparing PM composition, sources, and regional datasets if possible