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Why Care About the PM, 5 to AOD Relationship (n) The Global Pattern of n Model Uncertainties

Exposure to fine particulate matter (PM, 5) in ambient air is the leading environmental risk . The annual mean n varies greatly, from less than 10 to more than 200. . Simulatec! n is biased _high at low PM2_5 concentratio.n and biased low at high PM2_5 concgntratipn. |

factor for the global burden of disease, leading to 4.2 million premature deaths every year. . 1 values are highest over desert regions such as the Middle East, the southern part of Europe, and the western part of 0 ,_;A_\ﬁror?plhs:fe pla:[3/|s anpll\r;portant ro!(e T AOIZ? is’ctlmf?tl(ﬂ hand thelrefct)re helped mltllgatelnftslmﬁlla:]lon l:l)(las.th .
China, followed by regions with solid influence from anthropogenic aerosols, such as East Asia, South Asia, and large cities © high bias at Iow " IVl; s concentration might retiect the overly strong scavenging alott, which makes the moce

©€PM25 underestimate AOD. Some previous studies support this idea while others do not. More investigation is needed.
UMAN HAIR Combustion particles, organic around the WOrld.
HUMA compounds, metalé, etc.

« The lowest n is found in humid areas such as coastal areas and areas with high latitudes.
Observations

50-70um

A e <2.5um (microns) in diameter
(microns) in diameter

Base simulation If ignore the dry aerosol size of inorganics and organics | Qpplied LUO wet deposiﬁon

o]
o

Jan Jan Jan
300 Feb Feb Feb . 60
& PM10 200 M Mar

Dust, pollen, mold, etc. Mar o - 40
<10 um (microns) in diameter e i A e ] _
ME N E May R VEY 120 &
5 S o Jun . @
50 % Jun 2 Jun 2 |, 5
St I~ o~
= " S e M o :

(]

: . - - - A 20 Al B 1-20 @
» Site Mean - 20 o 20 § "9 g " - =

PWM = 81.7 ;ig/m PWM = 88.4 ;:g/m =cp - | ) ek Sep |

90 um (microns) in diameter o =33.4 ] -=189 10 Oct 1 Oct Oct ]
FINE BEACH SAND Nov Nov Nov - 60
Image courtesy of the U.S. EPA
Dec Dec bec ! ' : ] 80
: : : : 50 = - = = TR 5 10 20 50 5 10 20 50 100 150
Ground-measured PM, 5 is sparse, but satellite remote sensing plus a chemical transport PG (] PM2.5 mass conc. (ug/m?) PM2.5 mass conc. (ug/m?)

model (GEOS-Chem) offer an alternative solution. More specifically, this satellite-derived
PM, 5 is obtained from satellite observation of AOD by applying a modeled PM, 5 to AOD
relationship (n).

Bias in simulated n as a function of PM, s concentration for each month.
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Number of PM, s monitors per million inhabitants by country (Martin, R. 2019) The relative difference between simulated and measured n (left) before and (right) after applying the parameterized Res
Measured (left) and simulated (right) annual mean n (top), surface PM2.5 (middle), and AOD (botftom)

for 2019. PWM = population-weighted mean.
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. « Simulated n is biased high in low pollution areas and biased low in strong pollution areas. This indicates the possibility of
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