Improving representation of the AOD to $PM_{2.5}$ relationship with a convolutional neural network

1. Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States;

Siyuan Shen¹, Aaron van Donkelaar¹, Chi Li¹, Nathan Jacobs², Chenguang Wang², and Randall V. Martin¹

2. Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States;

Motivation

Exposure to ambient fine particulate matter (PM25) is the leading global environmental risk factor for mortality and disease

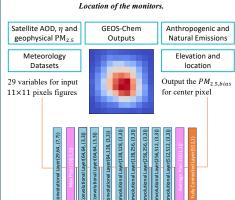
Lack of ground monitors motivate us to get a reliable estimation of global PM25 concentration.

Deep learning is a powerful tool, with growing applications in many fields. Although traditional methods such as geographically weighted regression (GWR) [1] have been proven to be powerful methods for globally representing the residual bias in geophysical satellite-derived PM2.5 vs observations, we still seek to improve accuracy through deep learning models.

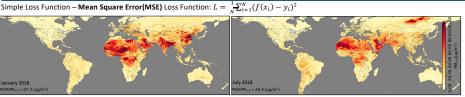
Methods

Initial method to estimate global ground-level PM25, geophysical PM25 based on satellite derived AOD and GEOS-Chem model[2]. Our model is based on the geophysical PM2.5 concentration.

 $PM_{2.5,Geophysical} = \eta \times AOD_{Retrived}$ AOD_{Model} Learning Object: $PM_{2.5,bias} = PM_{2.5,ground\ truth} - PM_{2.5,Geophysical}$



Results – Performance Evaluation



$$L = \frac{1}{N} \sum_{i,j=1}^{N} \left[(1 + \beta e^{-\alpha y_i^2})(f(x_i) - y_i)^2 + \lambda_1 ReLU(-f(x_i) - GeoPM_{2.5,i}) + \lambda_2 ReLU(f(x_i) - \gamma GeoPM_{2.5,i}) \right], \alpha, \beta, \gamma, \lambda_1, \lambda_2 > 0$$

Adjusted Cost functions with a priori value constrains improve the gridded PM_{25} estimation in areas with sparse

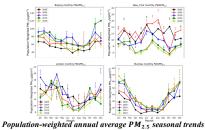
It also improves the coefficient of determination(R^2) in areas with low concentration, e.g., North America, and Europe.

Spatial Cross-Validation results compared with ground observation

Orange – Global; Green – Asia; Blue – North America; Grey - Europe												
	CNN R ²	CNN R ²	Hybrid R ²	Asia,	Asia,	Hybrid R ²	North America,	North America,	Hybrid R ²	Europe,	Europe,	Hybrid R ²
	Global,	Global,	Global,	2015-2019,	2015-2019,	Asia,	2001-2019,	2001-2019,	North America,	2010-2019,	2010-2019,	Europe,
	2015-2019, N=10870	2015-2019, N=10870	2015-2019, N=10870.	N=3515, MSE	N=3515 w/Penalties	2015-2019, N=3515	N=2874 MSE	N=2874 w/Penalties	2001-2019, N=2874	N=3310 MSE	N=3310 w/Penalties	2010- 2019.
	MSE	w/Penalties	14-10070,	WIOL	W/I GIIAIUGS	14-5515	MOL	w/r enaities	14-2074	MOL	w/r enames	N=3310
Annual	0.86	0.86	0.84	0.74	0.74	0.69	0.58	0.59	0.57	0.69	0.70	0.68
	[0.83, 0.89]	[0.82, 0.89]	[0.81,0.86]	[0.62, 0.78]	[0.62,0.78]	[0.65,0.72]	[0.45,0.70]	[0.47,0.69]	[0.42,0.73]	[0.60,0.80]	[0.60,0.79]	[0.66,0.70]
January	0.89	0.89	0.86	0.80	0.79	0.75	0.55	0.50	0.51	0.74	0.75	0.72
	[0.86,0.92]	[0.86,0.92]	[0.84,0.88]	[076,0.84]	[0.71,0.81]	[0.72,0.80]	[0.39,0.64]	[0.39,0.57]	[0.29,0.64]	[0.66,0.85]	[0.66,0.85]	[0.67,0.76]
April	0.85	0.84	0.81	0.67	0.66	0.62	0.55	0.60	0.57	0.61	0.62	0.59
	[0.82,0.88]	[0.81,0.88]	[0.78,0.84]	[0.63,0.75]	[0.60,0.72]	[0.58,0.66]	[0.46,0.70]	[0.49,0.71]	[0.29,0.64]	[0.53,0.71]	[0.54,0.68]	[0.53,0.64]
July	0.78	0.77	0.72	0.63	0.64	0.59	0.62	0.66	0.61	0.55	0.57	0.53
	[0.74,0.81]	[0.72,0.81]	[0.67,0.77]	[0.55,0.73]	[0.55,0.73]	[0.49,0.65]	[0.52,0.71]	[0.55,0.74]	[0.43,0.78]	[0.45,0.65]	[0.47,0.67]	[0.42,0.58]
October	0.83	0.83	0.78	0.71	0.71	0.61	0.53	0.57	0.53	0.69	0.70	0.67
	[0.78,0.87]	[0.77,0.88]	[0.75,0.82]	[0.55,0.77]	[0.53,0.75]	[0.57,0.64]	[0.45,0.67]	[0.48,0.68]	[0.42,0.69]	[0.62,0.80]	[0.63,0.80]	[0.62,0.71]

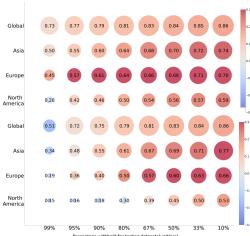
Results – Exposure to PM_{2.5} Analysis

Map of population-weighted annual average PM2 5 in 2018



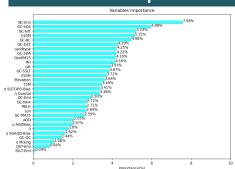
in Beijing, New York, London, and Mumbai

Robustness Test



We withheld different percentage of the monitors for testing datasets from 10% to 99%. The model includes a priori estimation of PM_{2.5} (above) show more robustness than the model without a priori estimation of

Variables importance



Conclusions:

- Our method shows better performance than both traditional statistical method(GWR), and simple deep learning model.
- Our model shows high accuracy with only few ground monitors which indicates the reliability of the estimation in area with sparse

Acknowledgement:

NASA Grant 80NSSC22K0200