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Motivation
Exposure to ambient fine 
particulate matter (PM2.5) is the 
leading global environmental risk 
factor for mortality and disease 
burden.

Lack of ground monitors motivate 
us to get a reliable estimation of 
global PM2.5  concentration.

Methods

𝑃𝑀!.#,%&'()*+,-./ = 𝜂 ×𝐴𝑂𝐷0&12,3&4 𝜂 =
𝑃𝑀!.#,5'4&/

𝐴𝑂𝐷5'4&/

Initial method to estimate global ground-level PM!.# , geophysical PM!.#
based on satellite derived AOD and GEOS-Chem model[2]. Our model is 
based on the geophysical PM!.# concentration.

Results – Performance Evaluation Robustness Test

Learning Object:  𝑃𝑀!.#,6,.+ = 𝑃𝑀!.#,72'894 1281) − 𝑃𝑀!.#,%&'()*+,-./

Location of the monitors.

Deep learning is a powerful tool, with growing applications in many 
fields. Although traditional methods such as geographically weighted 
regression (GWR) [1] have been proven to be powerful methods for 
globally representing the residual bias in geophysical satellite-derived 
𝑃𝑀!.# vs observations, we still seek to improve accuracy through deep 
learning models.

Satellite AOD, 𝜂 and 
geophysical PM!.#
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Simple Loss Function – Mean Square Error(MSE) Loss Function: 𝐿 = <
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Loss Function with a priori value constrains :

𝐿 =
1
𝑁
5

,><

=
[(1 + 𝛽𝑒?@*A

B
)(𝑓 𝑥, − 𝑦,)!+𝜆<𝑅𝑒𝐿𝑈 −𝑓 𝑥, − 𝐺𝑒𝑜𝑃𝑀!.#,, + 𝜆!𝑅𝑒𝐿𝑈 𝑓 𝑥, − 𝛾𝐺𝑒𝑜𝑃𝑀!.#,, ], 𝛼, 𝛽, 𝛾, 𝜆< , 𝜆! > 0

January 2018

January 2018 July 2018

July 2018

Spatial Cross-Validation results compared with ground observation
Orange – Global; Green – Asia; Blue – North America; Grey - Europe

Variables importance 

Results – Exposure to 𝐏𝐌𝟐.𝟓 Analysis

Map of population-weighted annual average 𝑷𝑴𝟐.𝟓 in 2018
Population-weighted annual average 𝑷𝑴𝟐.𝟓 seasonal trends 

in Beijing, New York, London, and Mumbai

Conclusions:
• Our method shows better performance than both traditional statistical

method(GWR), and simple deep learning model.
• Our model shows high accuracy with only few ground monitors 

which indicates the reliability of the estimation in area with sparse 
monitors.
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Adjusted Cost functions with a priori value constrains improve the gridded 𝑷𝑴𝟐.𝟓 estimation in areas with sparse 
monitors, e.g., Tibet.
It also improves the coefficient of determination(𝑹𝟐) in areas with low concentration, e.g., North America, and Europe.

Percentage withheld for testing datasets(unitless) 
Percentage withheld for testing datasets(unitless) 

We withheld different percentage of the monitors for testing datasets from 
10% to 99%. The model includes a priori estimation of PM!.#(above) show 
more robustness than the model without a priori estimation of 
PM!.#(bottom).


