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Deep learning is a powerful tool, with growing applications in many
fields. Although traditional methods such as geographically weighted
regression (GWR) [1] have been proven to be powerful methods for
globally representing the residual bias in geophysical satellite-derived
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PM, 5 vs observations, we still seek to improve accuracy through deep
learning models.
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Initial method to estimate global ground-level PM, 5, geophysical PM, g
based on satellite derived AOD and GEOS-Chem model[2]. Our model is | Adjusted Cost functions with a priori value constrains improve the gridded P M, ¢ estimation in areas with sparse
based on the geophysical PM, 5 concentration. monitors, e.g., Tibet.
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It also improves the coefficient of determination(R?) in areas with low concentration, e.g., North America, and Europe.
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Conclusions:

¢ Our method shows better performance than both traditional statistical
method(GWR), and simple deep learning model.
Our model shows high accuracy with only few ground monitors
which indicates the reliability of the estimation in area with sparse
g monitors.
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