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Figure 2: The 2018-2020 DVE over the Chicago Metropolitan area calculated from all three methods

Figure 3: A scatter plot of the 2016-2018 EPA DVs (μg/m3)
vs. the WashU NA DVEs (μg/m3) using all three methods .
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Figure 2: Counties ranked from dirtiest to cleanest based on the WashU GL 2018-2020 PM2.5

DVE.
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In the United States, fine particulate matter (PM2.5) contributes to
roughly 48,000 deaths (State of the Global Air, 2020). In addition
to premature mortality, exposure to PM2.5 can lead to respiratory,
cardiovascular, and other diseases. The U.S. Environmental
Protection Agency (EPA) monitors PM2.5 through its monitoring
network.

The American Lung Association State of the Air Report
The American Lung Association (ALA) publishes an annual State of
the Air report that acts as an air quality “report card”. The report
uses EPA PM2.5 design values (DV) calculated from ground monitor
data. The DV is the annual mean PM2.5 concentration from a
monitor, averaged over three consecutive years (e.g., 2013, 2014,
and 2015 data is used to calculate the 2015 DV period). This
report puts air pollution into everyday language by assigning
passing (DV ≤ 12.0 μg/m3) or failing (DV ≥ 12.1 μg/m3) grades to
counties and ranks them from dirtiest to cleanest.

Still, nearly 80% of counties lack air quality monitors (Holloway et
al., 2021), leaving residents of those counties unaware of the air
they breathe. Satellite-derived estimates of PM2.5 can
complement the ground monitor-based approach used by the
ALA to provide PM2.5 concentration estimates across the U.S.

Figure 1: EPA PM2.5monitors and their 2020 annual concentration
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• Publicly available data-fusion products can provide estimates of near surface
PM2.5 providing air quality information away from monitors

• We were able to calculate passing and failing metrics for all U.S. counties
using all three methods

• Using the maximum grid per county showed good agreement with the PM2.5

analysis approach used by the American Lung Association for annual average
PM2.5

• Alternate approaches could be appropriate for analyzing gridded data for
comparison to monitor data depending on the goal of the analysis

We allocated the 2013-2020 gridded satellite-derived PM2.5

datasets to U.S. counties using three statistical methods.

Table 1: A condensed list of the publicly available datasets we collected
to reflect the ones we used in our analysis. highlighting some of the
features.

Maximum Method
Assigning a county’s DVE with its maximum 1km x 1km grid value showed the
greatest correlation between the EPA DVs and the satellite-derived DVEs as well
as their ranks. This suggests that monitors are placed in more polluted areas of
the country.

Based on our analysis of annual average PM2.5 we found:
• The satellite data detected high levels (≥12.1 μg/m3) of PM2.5 in counties with

no monitors

• There was both agreement and disagreement between monitor data and
satellite data

• The satellite-derived PM2.5 data products had varying concentration levels
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Following the methodology 
from the ALA State of the Air 
Report, we calculated 
annual average PM2.5 design 
value equivalents (DVEs) and 
assigned grades and 
rankings to each county. 

We used correlations to  
compare our results to the 
ALA report. 

• Minimum: assigning the minimum pixel value within a county as the
county concentration

• Mean: assigning the average of all the gridded pixel values within a
county as the county concentration

• Maximum: assigning the maximum pixel value within a county as the
county concentration
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