

Monitoring Air Quality in Northern Utah Using Fixed and Mobile Sensors

John Horel, Daniel Mendoza, Colin Johnson, Alexander Jacques John.horel@utah.edu, Department of Atmospheric Sciences, University of Utah

Wasatch Front Networks

- Understanding air pollution episodes requires data from air quality and meteorological sensors at the surface and aloft
- Utah Division of Air Quality (UDAQ) has an extensive network of meteorological and air quality monitoring stations equipped at many sites with Photochemical Assessment Monitoring Stations (PAMS) and ceilometers
- National Weather Service (NWS) provides many meteorological towers, continuous radar (WSR-88D and TDWR) scans and twice-daily rawinsonde launches at KSLC
- Our research team supports sensors at over two dozen sites in the region with many equipped with ozone and particulate sensors
- Quasi-regular diurnal flows are common that affect air quality, including:
 - Mountain-valley exchange (red arrows)
 - Afternoon lake breezes from Gilbert Bay (heavy black arrows)
 - Flows towards/away from Farmington Playa (black arrows)
 - Canyon flows entering and exiting the Salt Lake Valley (purple arrows)
 - Slope flows down and up all terrain features

Salt Lake City Urban Region

Air Quality Issues

- Four-season air quality and health issues
- Winter
 - Ridging aloft; cold air pools trapped in basins
 - Particulates
- Summer
 - Ridging aloft; local circulations dominate
 - Particulates, ozone
- Spring Fall Dust Events
 - Strong frontal winds or outflow boundaries
 - Dry playa or tilled fields
 - Particulates
- Summer Fall Wildfires
 - Smoke transport from regional or local wildfires
 - Particulates, ozone

Objective

- To better understand air quality along Utah's Wasatch Front
- Builds on successful UTA TRAX Air Quality Monitoring Project
 - First research grade air quality observations using light rail
 - TRAX measures air pollution primarily on commercial corridors
- Expansion to eBuses in Salt Lake County provides measurements across a wide range of urban and suburban areas
- Flexibility of eBus routing allows monitoring and analysis of cases affecting different parts of Salt Lake Valley
- By Spring 2024, air quality sensors will continue to be onboard 3 light rail cars and over a dozen eBuses
- Mix of sensor packages: Ozone, PM₁, PM_{2,5}, PM₄, PM₁₀

UTA Bus Route Observations

Summer Ozone

- Number of bus reports per 0.001° x 0.001° cell during the period from Oct 2021 – July 2023
- Highest number of reports are at the bus depot and the lunch area for the drivers
- The most traveled routes have been UTA routes 2, 209, 220, and 519

Salt Lake

PM2.5 Nonattainment Areas

Winter PM_{2.5}

Ozone Nonattainment Areas

Source: https://utahdeq.maps.arcgis.com

- Limited number of possible routes due to the need to charge at only a few locations (e.g., Central Garage)
- Limited number of drivers trained on eBuses impacting operations
- eBus downtime for maintenance or critical repairs leads to data gaps. As fleet expands, individual eBus downtime will impact overall coverage less
- Mobile observations more frequent during commute periods
- comparisons On-going operations and maintenance funding

Route updating occasionally affects long-term

Team Members and Supporters

- Partnering Agencies
- Salt Lake County, Utah Division of Air Quality (UDAQ), Utah Transit Agency (UTA), University of Utah, Salt Lake City Corporation

Collaborating Partner

- Healthy Environment Alliance Of Utah (HEAL)
- Project Supporters
- Utah State Legislature, Rocky Mountain Power, Utah Clean Air Partnership (UCAIR), Wasatch Front Regional Council (WFRC), Sustainable Campus Initiative Fund (SCIF)

Challenges