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Evaluating ozone sensitivity to emissions of its precursor gases with satellite data has
evolved into a cutting-edge and increasingly popular application of remote sensing
for health and air quality. Google Earth Engine offers a practical, user-friendly 
platform to support this analysis anywhere in the world using data from the TROPOMI
instrument.

Satellite Data to Inform Ozone Sensitivity:
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Martin2 and advanced by Dr. Bryan Duncan,3 with more 
recent studies evolving the understanding of satellite-derived
FNR for air quality applications.4,5

Despite the potential for FNR to inform ozone sensitivity, 
the extent of the relationship between the satellite retrieval
of HCHO and ground level VOCs is a subject of ongoing
research.4,6 Other limitations include satellite retrieval error,
complex chemistry, and variations in ozone sensitivity 
depending on the location of interest. Still, satellite-derived
FNR can serve as an indicator given the scarcity of monitors
for NO2 and VOCs needed to calculate ozone indicator 
ratios with surface data.

Although satellite-derived FNR, NO2, and HCHO have 
the potential to support air quality management, the use of
these data products has been limited by technical hurdles 
of data access and manipulation. Typically, calculating FNR
requires downloading the satellite data and calculating 
averages and ratios in a programming environment like
Python. This level of data processing can be a barrier for 
resource-limited air quality organizations. 

Applying Google Earth Engine
We have found that Google Earth Engine offers the most
user-friendly approach for analyzing the best-available 
global satellite data for HCHO and NO2 from an instru-
ment called the TROPOspheric Monitoring Instrument
(TROPOMI). While in orbit around Earth, TROPOMI
records daily observations at approximately 1:30 pm local
time. The data are available through Google Earth Engine
from July 2018 to present day at a spatial resolution of 

High levels of near-surface ozone damage human health
and vegetation, leading to the regulation of ozone through
the National Ambient Air Quality Standards (NAAQS). Most
commonly, ozone is formed by volatile organic compounds
(VOCs) and nitrogen oxides (NOx = NO2 + NO) reacting
in the presence of sunlight, especially on hot days. While
ozone formation has historically been more sensitive to
VOCs in urban areas, and more sensitive to NOx in non-
urban areas, these patterns are changing as reductions in
NOx emissions have moved many cities into NOx-sensitive
ozone production regimes. 

Air quality management for urban ozone requires character-
izing the sensitivity of ozone to emitted VOCs versus NOx
to determine efficient mitigation strategies. However, this
analysis is severely limited by the lack of ground-based
measurement data. Satellite data offer continuous spatial
coverage of NO2 and formaldehyde (HCHO, a VOC that is
an indicator of ozone production). This is particularly valu-
able because it allows air quality managers to evaluate ozone
sensitivity in areas without specific monitoring capabilities,
such as areas away from monitors or where monitors do not
measure the specific precursors of interest, namely HCHO.1

This comprehensive coverage bridges the data gap and 
enables a more thorough evaluation of air quality and
ozone-related dynamics across various locations. 

The ratio of HCHO to NO2, often referred to as formalde-
hyde nitrogen ratio (FNR), has been used to identify
whether VOCs or NOx are the limiting factor in ozone 
production. Research supporting the application of satellite
data to ozone sensitivity was first proposed by Dr. Randall
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Google Earth Engine includes a web tool, the Code Editor,
that allows users to manipulate datasets without download-
ing the data onto their local machine (see Figure 1), with
free access for government research among other noncom-
mercial applications purposes (see https://earthengine.
google.com/noncommercial/). 

Satellite Data for Ozone Indicators
The first step in calculating the FNR is to filter the satellite
data based on data quality flags. Google Earth Engine 
automatically does this by removing the pixels with a lower
quality than what is recommended in the product manuals
(a quality assurance value less than 0.5 for HCHO and 
0.75 for NO2).7,8 The next step is to select 10+ days for 
averaging, with the goal of smoothing out the “noise” in the
HCHO data product (34+ is preferred, with averaging times
for TROPOMI drawn from Vigouroux et al., 2020).9 We 
consider here the New York City and Denver Metropolitan
Statistical Areas (MSAs) to compare and expand upon previ-
ous work.1,5 Figure 2 shows NO2 and HCHO averaged over
the summer ozone season for each of these two regions.
Consistent with prior analyses of TROPOMI NO2, the NO2

vertical column densities (VCDs) over both New York City
and Denver are centralized to the city center and decrease
further away from the city (Figure 2a).10 The abundance of
HCHO (Figure 2b) does not show the same centralized pat-
tern, due to VOC contributions from biogenic sources.11

Capturing FNR
To analyze lower-ozone and higher-ozone days, we used
day-by-day characterizations of ambient ozone for 2022
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3.5 x 7.5 km2. Google Earth Engine allows for a range of
analyses that can be useful in analyzing ozone sensitivities,
including plotting averages of consecutive or nonconsecutive
days, and calculating the product or ratio of variables. 
We apply these capabilities to highlight a key finding from
remote sensing-based analysis: that higher-ozone days tend
to be more NOx-limited, even in cities that are normally 
VOC-limited.5

Google Earth Engine is the only web tool that includes
TROPOMI and allows for temporal averaging and ratioing
necessary for FNR analysis. Table 1 compares the capabilities
of widely used platforms and tools used by the air quality
community for satellite data analysis. These include NASA
Worldview (https://worldview.earthdata.nasa.gov/), which
provides near-real-time data and archived historical data for
specific days but does not include TROPOMI or allow aver-
aging across time or calculation of ratios for FNR; NASA
Giovanni (https://giovanni.gsfc.nasa.gov/giovanni/), which 
allows for more complex analysis including averaging over
time, but does not include TROPOMI nor does it allow 
calculation of ratios for FNR; and NASA Panoply (https://
www.giss.nasa.gov/tools/panoply), which supports visualiza-
tion, and includes TROPOMI, but has no robust temporal
averaging capability. Python and other advanced data 
analysis tools (IDL, R, Matlab, etc.) are the most powerful
and flexible tools for data analysis, but require technical 
expertise, specialized training, and/or dedicated staff time.
Additionally, some analysis techniques follow a more selec-
tive filtering process that is best suited for Python or other
data analysis tools (e.g., removing pixels over water).5

Table 1. Overview of ease of use (green/E: easy, yellow/M: medium, red/D: difficult; based on author
judgement for users without programming experience), analysis capabilities and datasets available 
relevant to ozone sensitivity analysis including temporal averaging, division across variables, and 
inclusion of TROPOMI data (green/Y: yes, red/N: no) of five satellite data visualization tools: NASA
Worldview, NASA Giovanni, NASA Panoply, Google Earth Engine, and flexible data analysis software
including Python, IDL, R, Matlab, and other related environments.
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Figure 1. Screenshot of the Code Editor available in Google Earth Engine with example code and imagery.
Source: https://code.earthengine.google.com/

Figure 2. The ozone season is 153 days long, but data were not available at every pixel for every day
because quality levels vary across the domain and retrieval of data: (a) NO2 average over New York City
(left) (mean of 112 days available per pixel) and Denver (right) (mean of 105 days available per pixel) of
all days during the ozone season (May 1–September 30); (b) HCHO average over New York City (left)
(mean of 127 days available per pixel) and Denver (right) of all days during the ozone season (May 1–
September 30) (mean of 109 days available per pixel). The exact number of days plotted per pixel can
be extracted from Google Earth Engine if desired. The units of mol/m2 are used rather than the com-
monly used molecules/cm2 because The European Space Agency reports TROPOMI data products to
comply with the International System of Units. This can be converted to molecules/cm2 by multiplying
the product by 6.02214 x 1019.
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from the U.S. Environmental Protection Agency (EPA; see
https://www.epa.gov/outdoor-air-quality-data/air-data-tile-
plot), as shown in Figure 3. The New York City MSA had 12
higher-ozone days in 2022; the Denver MSA, 35 higher-
ozone days (not all days have valid TROPOMI data, so we
also applied a mask to regions with less than 10 days in-
cluded in the averaged pixels). For each urban area, tempo-
rally averaged HCHO data were divided by the temporally
averaged NO2 data to calculate the FNR for the entire
ozone season, lower-ozone days, and higher-ozone days in
Google Earth Engine (see Figure 4). 

Based on Jin et al. (2020), we define FNR values indicative
of VOC-limited, NOx-limited, or transitional (affected by
both) regimes. Table 2 reports the FNR thresholds from Jin
et al. (2020) for seven cities, including New York City, so
city-specific values are used where available.4 The multi-city
average value is used for Denver.12

Ozone Sensitivity in Two Cities
Averaged over the full ozone season, the FNR for the down-
town area of both cities appear VOC-limited (Figure 4a).
This is expected as city centers tend to have a dense popula-
tion with many sources of anthropogenic NOx, making
VOCs the limiting component in ozone production. Further

away from the city center, the region becomes more NOx-
limited. This agrees with previous analysis showing more
NOx-limited regimes in the surrounding suburban areas,
most likely due to fewer NOx sources further from the city
center.3.5.10 This pattern is consistent during lower-ozone
days in both cities where the city center is VOC-limited, and
the surrounding suburban areas are more sensitive to NOx
(Figure 4b).

For higher-ozone days in New York City, satellite-retrieved
FNR values indicate a shift toward NOx-limited regimes 
(Figure 4c), this trend is consistent with Tao et al.’s (2022)
analysis for summer 2018.5 We find that in both cities more
of the region is NOx-limited on higher-ozone days than
lower-ozone days, implying a transition to NOx-limited
regimes on the most polluted days. These results suggest
that reductions in NOx emissions in New York City and
Denver may decrease ozone production on days above the
ozone NAAQS. 

Conclusion
Satellite data can inform ozone management strategies
through the use of the FNR, especially analyzed on 
higher-ozone days. Additionally, plotting HCHO and NO2

satellite data provides a visual representation of the spatial

Figure 3. Daily ozone AQI values for 2022 from EPA Outdoor Air Quality Data Viz Tools, Single Year
Tile Plot, for the New York City MSA (New York, NY; Newark, NJ; and Jersey City, PA; top) and 
the Denver MSA (Denver, Aurora, and Lakewood, CO; bottom). For this analysis, green/Good and 
yellow/Moderate are considered lower-ozone days; all day orange/Unhealthy for Sensitive Groups or
higher (0.071 ppm or higher) are considered higher-ozone days.
Source: https://www.epa.gov/outdoor-air-quality-data/air-data-tile-plot  
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Figure 4. Because the quality assurance of NO2 is more selective than that of HCHO, in some areas
there are a different number of available days of NO2 in comparison to HCHO. However, a mask was
applied to ensure at least 10 pixels of NO2 data and HCHO data were temporally averaged before 
calculating the ratio: (a) FNR average of all days during the ozone season. Over New York City (left),
153 days were plotted (mean of 112 days of NO2 and 127 days of HCHO available per pixel). Over
Denver (right), 153 days were plotted (mean of 105 days of NO2 and 109 days of HCHO available per
pixel). (b) FNR on days categorized as lower-ozone days during the ozone season. Over New York City,
141 days were plotted (mean of 100 days of NO2 and 114 days of HCHO available per pixel). Over
Denver, 118 days were plotted (mean of 72 days of NO2 and 76 days of HCHO available per pixel). 
(c) FNR on days categorized as higher-ozone days during the ozone season. Over New York City, 
12 days were plotted (mean of 12 days of NO2 and 12 days of HCHO available per pixel). Over 
Denver, 35 days were plotted (mean of 32 days of NO2 and 32 days of HCHO available per pixel).
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distribution of these pollutants, allowing air quality managers
to identify localized areas of concern and prioritize mitigation
efforts accordingly. We present here an approach using web
tools from EPA and Google Earth Engine to support satellite
data analysis over any region of the United States and any
year since 2018 (the first year for which TROPOMI is 

available). Our goal is to support air quality managers utiliza-
tion of satellite data to support ozone assessment for public
health, State Implementation Plans, and other applications.
This integrated approach facilitates a more holistic under-
standing of ozone dynamics and supports the implementa-
tion of targeted measures to improve air quality. em

Table 2. Thresholds for FNR analyses from the seven cities and recommended overall value discussed
from Jin et al. (2020). Uncertainty is expressed as two standard deviations (2σ). These thresholds were
derived using an empirical observation-based approach to identify the FNR value associated with the
highest probability that surface ozone exceeded 70 ppb.
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