INTRODUCTION

- **Background**
 - **Growing Concern:** Air quality is a significant issue in many urban areas globally, particularly in developing countries experiencing rapid industrialization.
 - **Health Impacts:** PM2.5, a harmful atmospheric aerosol, negatively affects human health, leading to lung and heart diseases.
 - **DoS Initiative:** The Department of State (DoS) initiated the DoSAir program in collaboration with the US EPA in 2008 to monitor air quality at over 80 embassies and consulates worldwide.
 - **Forecasting Gap:** Despite extensive monitoring, the DoSAir program needs air quality forecasting, which is provided by this HAQAST project.

- **Objective**
 - Develop a machine learning-based forecast system named City Air quality forecasting System (CARES), in collaboration with the U.S. Department of State and NASA’s HAQAST.
 - Utilize historical, satellite, and model data, including GEOS Forward Processing (FP) data as input to the CARES.

DATA and METHODOLOGY

- **Dataset** (Historical: July 2022 to February 2024, Independent Validation: March 2024)
 - Input Data: Utilizes GEOS FP aerosol and meteorological parameters
 - Output Data: PM2.5 measurements from AirNow DoS
- **Model Development**
 - Utilized a 10-fold cross-validation approach to train a Convolutional Neural Network (CNN) for capturing high nonlinearity between input and output data.
 - Developed a baseline model using global data and fine-tuned it with local data to create continent-specific models.

RESULTS and APPLICATIONS

- **Daily PM2.5 Forecasting Statistical Comparison (historical data set)**
 - Baseline model (CNN_Global)
 - Fine-tuned models (CNN_Continent)

- **Daily PM2.5 Forecasting, Abuja (Nigeria, [9.041, 7.477]) – Historical Data**

- **Daily PM2.5 Forecasting, Hanoi (Vietnam, [21.0219, 105.819]) – Independent Data**

- **3 hourly PM2.5 Forecasting Comparison**
 - High performance (South Asia, West Africa): High forecasting accuracy due to sufficient data capturing available features.
 - Moderate performance (Central Asia, East Asia): Slight deviation from global trends; accuracy improved with fine-tuning.
 - Poor performance Group (Europe, South America): Limited data fails to reflect input-output relationship; minimal improvement with additional fine-tuning.

- **ZephAir Application with NASA AQI Forecast**

- **Conclusions**
 - Developed a forecasting model using advanced CNN and GEOS FP input, achieving a maximum Correlation R of 0.93.
 - Fine-tuning overcame regional limitations, but some areas still have low accuracy due to data scarcity, requiring more data for improvement.