Bayesian Nonparametric Ensemble (BNE) algorithm for predictions of high spatiotemporal PM$_{2.5}$ concentrations

Vijay Kumar1, Jaime Benavides1, Carlos Carrillo-Gallegos2, Arlene Fiore3, John Paisley3,4 and Marianthi-Anna Kioumourtzoglou1,4

1Environmental Health Sciences, Columbia University, New York, NY, 2Earth and Planetary Sciences, MIT, Cambridge, MA,
3Electrical Engineering, Columbia University, New York, NY, 4Data Science Institute, Columbia University, New York, NY

Background and Methods

Motivating Problem:
- Air pollution associated with several adverse health outcomes [1]
- Scarcity of ground level monitors means we must model exposure
- Satellite data essential in filling gaps, but requires translation from column to surface measurements
- Current health studies use predictions from a single dataset
- We present a novel ensembling method to incorporate several different exposure datasets (with various methodologies) and provide uncertainty

Bayesian Nonparametric Ensemble (BNE) algorithm
- Integrate information across existing spatiotemporal prediction models
- Weights each model by its spatiotemporal predictive accuracy
 - i.e., spatiotemporal weights
- Provide spatiotemporal uncertainty of predictions
 - Including due to existing model disagreement

Flow-chart

Preparation

Training data AOD, CO, PM$_{2.5}$

Training set 80%

Testing set 20%

PM$_{2.5}$ for input models

Data preparation spatiotemporal

Bayesian algorithm

Normalized emissions

BNE predictions

Table: Daily PM$_{2.5}$ base models

Results

Input Exposure Models:

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Spatial Resolution</th>
<th>Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNE et al. 2019</td>
<td>1 x 1 km2</td>
<td>AOD from MODIS, gap filled with random forest approach, incorporating AOD data, land use regression variables, and meteorology from KEAR</td>
</tr>
<tr>
<td>BNE et al. 2021</td>
<td>1 x 1 km2</td>
<td>Generalized additive model of three ML methods: Incorporating AOD data, AOD from MODIS, SDOSS CHEM, CMAQ (v4.3), and land use variables</td>
</tr>
<tr>
<td>ESIMAP CMAQ (v4.3)</td>
<td>12 x 12 km2</td>
<td>USEPA Air Quality Model (CMAQ) (v4.3.2), driven by WRF (v4.3), meteorology from the National Emissions Inventory (NEI) for 2017</td>
</tr>
<tr>
<td>FASID</td>
<td>12 x 12 km2</td>
<td>Fusion of CMAQ (v4.3) chemical/transport model (VOC and NOx) [4.3.2] and the National Emissions Inventory (NEI) for 2017</td>
</tr>
<tr>
<td>WRF-CMAQ [R. Kumar et. al 2021]</td>
<td>12 x 12 km2</td>
<td>Biweekly assimilating AOD retrievals from MODIS and CO retrievals from MOPITT into CMAQ, with WRF providing meteorological input</td>
</tr>
</tbody>
</table>

Table: Daily PM$_{2.5}$ base models

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Spatial Resolution</th>
<th>Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNE et al. 2019</td>
<td>1 x 1 km2</td>
<td>AOD from MODIS, gap filled with random forest approach, incorporating AOD data, land use regression variables, and meteorology from KEAR</td>
</tr>
<tr>
<td>BNE et al. 2021</td>
<td>1 x 1 km2</td>
<td>Generalized additive model of three ML methods: Incorporating AOD data, AOD from MODIS, SDOSS CHEM, CMAQ (v4.3), and land use variables</td>
</tr>
<tr>
<td>ESIMAP CMAQ (v4.3)</td>
<td>12 x 12 km2</td>
<td>USEPA Air Quality Model (CMAQ) (v4.3.2), driven by WRF (v4.3), meteorology from the National Emissions Inventory (NEI) for 2017</td>
</tr>
<tr>
<td>FASID</td>
<td>12 x 12 km2</td>
<td>Fusion of CMAQ (v4.3) chemical/transport model (VOC and NOx) [4.3.2] and the National Emissions Inventory (NEI) for 2017</td>
</tr>
<tr>
<td>WRF-CMAQ [R. Kumar et. al 2021]</td>
<td>12 x 12 km2</td>
<td>Biweekly assimilating AOD retrievals from MODIS and CO retrievals from MOPITT into CMAQ, with WRF providing meteorological input</td>
</tr>
</tbody>
</table>

Mean Concentration: 6.84 ± 0.7 ppb

Mean Concentration: 6.53 ± 0.8 ppb

Mean Concentration: 5.03 ± 0.7 ppb

References

Completed 2010-2016; more years, pollutants coming!