Accounting for the health benefits of air pollution regulations in China, 2013-2019

Patrick L Kinney,1 Beizhan Yan,2 Xiaoming Shi,3 Maigeng Zhou,4 Zhenping Zhao,4 Shuxiao Wang,5 Haotian Zheng,5 Lucas Henneman,6 Philip K. Hopke,7 Tiantian Li,3 Peng Yin,4 Limin Wang,4 Howard Chang,8 Runmei Ma,3 Qinghua Sun,3 Corwin Zigler,9 Haidong Kan10

1 Boston University School of Public Health, Boston, MA USA; 2 Columbia Lamont Doherty Earth Observatory, Palisades, NY; 3 National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; 4 National Center for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; 5 Tsinghua University School of the Environment, Beijing, China; 6 George Mason University, Fairfax, VA; 7 University of Rochester, Rochester, NY; 8 Emory University, Atlanta, GA; 9 University of Texas, Austin, TX; 10 Fudan University, Shanghai, China
Strategy

1. Define observed surface concentrations of PM$_{2.5}$ and ozone from 2008-2019 using available gridded hybrid model estimates

2. Use CMAQ to model ambient PM$_{2.5}$ and ozone changes from 2008-19 across China with:
 a. Observed emissions and meteorology → representing observed concentrations
 b. Constant 2013 emissions but observed meteorology → what would concentrations have been without the 2013+ regulations?
 c. Use the location-specific differences in these two scenarios, applied to observed concentrations, to define places where regulations had greater or lesser air quality benefits (e.g., more than 5 μg/m3 reduction in PM$_{2.5}$)

3. Analyze changes in mortality rates over space and time from two large, nationally representative Chinese cohorts, amounting to over 200,000 individuals
 ➢ Ask: how did survival probabilities change in places that were more impacted by regulations?
Effects of 2013 regulations on PM$_{2.5}$ in China based on CMAQ modeling
Increase in survival probability for locations in China where regulations led to more than or less than 5 $\mu g/m^3$ reduction in PM$_{2.5}$ concentrations from 2013-2019. Based on the Chinese Chronic Diseases Risk Factor Surveillance cohort (N=229,629)